RESUMO
Pesticides are essential in agricultural development. Controlled-release pesticides have attracted great attentions. Base on a principle of spatiotemporal selectivity, we extended the photoremovable protective group (PRPG) into agrochemical agents to achieve controllable release of active ingredients. Herein, we obtained NP-TBZ by covalently linking o-nitrobenzyl (NP) with thiabendazole (TBZ). Compound NP-TBZ can be controlled to release TBZ in dependent to light. The irradiated and unirradiated NP-TBZ showed significant differences on fungicidal activities both inâ vitro and inâ vivo. In addition, the irradiated NP-TBZ displayed similar antifungal activities to the directly-used TBZ, indicating a factual applicability in controllable release of TBZ. Furthermore, we explored the action mode and microcosmic variations by SEM analysis, and demonstrated that the irradiated NP-TBZ retained a same action mode with TBZ against mycelia growth.
Assuntos
Praguicidas , Tiabendazol , Tiabendazol/farmacologia , Tiabendazol/análise , Preparações de Ação Retardada , Antifúngicos/farmacologiaRESUMO
Succinate dehydrogenase (SDH) is extremely important in metabolic function and biological processes. Modulation of SDH has been reported to be a promising therapeutic target to SDH mutations. Current measures for the regulation of SDH are scarce, and precise and reversible modulation of SDH still remains challenging. Herein, a powerful tool for reversible optical control of SDH was proposed and evaluated utilizing the technology of photopharmacology. We reported photochromic ligands (PCLs), azobenzene-pyrazole amides (APAs), that exert light-dependent inhibition effects on SDH. Physicochemical property tests and biological assays were conducted to demonstrate the feasibility of modulating SDH. In this paper, common agricultural pathogens were used to develop a procedure by which our PCLs could reversibly and precisely control SDH utilizing green light. This research would help us to understand the target-ligand interactions and provide new insights into modulation of SDH.
Assuntos
Succinato Desidrogenase , Ligantes , Mutação , Succinato Desidrogenase/metabolismoRESUMO
Naturally occurring avermectins are allosteric modulators of glutamate-gated chloride channels (GluCls) and possess exceptionally potent anthelmintic, acaricidal, and insecticidal activities. Here, we develop photoswitchable azobenzene-avermectin (ABAVM) derivatives, which can be photoactivated upon ultraviolet irradiation. After illumination, the best compound p-AB4â³AVM had a 1.88-fold and 2.74-fold insecticidal activity enhancement toward Culex pipiens pallens and Mythimna separata larvae, respectively. p-AB4â³AVM allows for optical regulation of dorsal unpaired median neuron membrane potential with a 2.15-fold fluorescence intensity decrease after illumination. p-AB4â³AVM and p-AB5AVM enable optical modulation of the behavioral response of Culex pipiens pallens larvae with 1- and 4-fold reduced mobility upon irradiation, respectively. The ABAVMs could be used to reversibly manipulate GluCls with light and may be useful for the mechanistic study of macrocyclic lactone insecticides.