Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(33): e2121040119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35943986

RESUMO

Regulation of firing rate homeostasis constitutes a fundamental property of central neural circuits. While intracellular Ca2+ has long been hypothesized to be a feedback control signal, the molecular machinery enabling a network-wide homeostatic response remains largely unknown. We show that deletion of insulin-like growth factor-1 receptor (IGF-1R) limits firing rate homeostasis in response to inactivity, without altering the distribution of baseline firing rates. The deficient firing rate homeostatic response was due to disruption of both postsynaptic and intrinsic plasticity. At the cellular level, we detected a fraction of IGF-1Rs in mitochondria, colocalized with the mitochondrial calcium uniporter complex (MCUc). IGF-1R deletion suppressed transcription of the MCUc members and burst-evoked mitochondrial Ca2+ (mitoCa2+) by weakening mitochondria-to-cytosol Ca2+ coupling. Overexpression of either mitochondria-targeted IGF-1R or MCUc in IGF-1R-deficient neurons was sufficient to rescue the deficits in burst-to-mitoCa2+ coupling and firing rate homeostasis. Our findings indicate that mitochondrial IGF-1R is a key regulator of the integrated homeostatic response by tuning the reliability of burst transfer by MCUc. Based on these results, we propose that MCUc acts as a homeostatic Ca2+ sensor. Faulty activation of MCUc may drive dysregulation of firing rate homeostasis in aging and in brain disorders associated with aberrant IGF-1R/MCUc signaling.


Assuntos
Canais de Cálcio , Cálcio , Receptor IGF Tipo 1 , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Deleção de Genes , Homeostase , Camundongos , Plasticidade Neuronal , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Reprodutibilidade dos Testes
2.
Proc Natl Acad Sci U S A ; 112(25): E3291-9, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26056260

RESUMO

Stabilization of neuronal activity by homeostatic control systems is fundamental for proper functioning of neural circuits. Failure in neuronal homeostasis has been hypothesized to underlie common pathophysiological mechanisms in a variety of brain disorders. However, the key molecules regulating homeostasis in central mammalian neural circuits remain obscure. Here, we show that selective inactivation of GABAB, but not GABA(A), receptors impairs firing rate homeostasis by disrupting synaptic homeostatic plasticity in hippocampal networks. Pharmacological GABA(B) receptor (GABA(B)R) blockade or genetic deletion of the GB(1a) receptor subunit disrupts homeostatic regulation of synaptic vesicle release. GABA(B)Rs mediate adaptive presynaptic enhancement to neuronal inactivity by two principle mechanisms: First, neuronal silencing promotes syntaxin-1 switch from a closed to an open conformation to accelerate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly, and second, it boosts spike-evoked presynaptic calcium flux. In both cases, neuronal inactivity removes tonic block imposed by the presynaptic, GB(1a)-containing receptors on syntaxin-1 opening and calcium entry to enhance probability of vesicle fusion. We identified the GB(1a) intracellular domain essential for the presynaptic homeostatic response by tuning intermolecular interactions among the receptor, syntaxin-1, and the Ca(V)2.2 channel. The presynaptic adaptations were accompanied by scaling of excitatory quantal amplitude via the postsynaptic, GB(1b)-containing receptors. Thus, GABA(B)Rs sense chronic perturbations in GABA levels and transduce it to homeostatic changes in synaptic strength. Our results reveal a novel role for GABA(B)R as a key regulator of population firing stability and propose that disruption of homeostatic synaptic plasticity may underlie seizure's persistence in the absence of functional GABA(B)Rs.


Assuntos
Hipocampo/fisiologia , Homeostase , Neurônios/metabolismo , Receptores de GABA-B/metabolismo , Animais , Células Cultivadas , Potenciais Evocados , Hipocampo/citologia , Camundongos , Camundongos Endogâmicos BALB C
3.
Nat Commun ; 14(1): 7002, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919286

RESUMO

The mechanisms that confer cognitive resilience to Alzheimer's Disease (AD) are not fully understood. Here, we describe a neural circuit mechanism underlying this resilience in a familial AD mouse model. In the prodromal disease stage, interictal epileptiform spikes (IESs) emerge during anesthesia in the CA1 and mPFC regions, leading to working memory disruptions. These IESs are driven by inputs from the thalamic nucleus reuniens (nRE). Indeed, tonic deep brain stimulation of the nRE (tDBS-nRE) effectively suppresses IESs and restores firing rate homeostasis under anesthesia, preventing further impairments in nRE-CA1 synaptic facilitation and working memory. Notably, applying tDBS-nRE during the prodromal phase in young APP/PS1 mice mitigates age-dependent memory decline. The IES rate during anesthesia in young APP/PS1 mice correlates with later working memory impairments. These findings highlight the nRE as a central hub of functional resilience and underscore the clinical promise of DBS in conferring resilience to AD pathology by restoring circuit-level homeostasis.


Assuntos
Doença de Alzheimer , Estimulação Encefálica Profunda , Camundongos , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/patologia , Núcleos da Linha Média do Tálamo/fisiologia , Camundongos Transgênicos , Cognição , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/metabolismo
4.
Proc Natl Acad Sci U S A ; 106(17): 7119-24, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19359475

RESUMO

IL-1 causes a marked increase in the degree of expansion of naïve and memory CD4 T cells in response to challenge with their cognate antigen. The response occurs when only specific CD4 T cells can respond to IL-1beta, is not induced by a series of other cytokines and does not depend on IL-6 or CD-28. When WT cells are primed in IL-1R1(-/-) recipients, IL-1 increases the proportion of cytokine-producing transgenic CD4 T cells, especially IL-17- and IL-4-producing cells, strikingly increases serum IgE levels and serum IgG1 levels. IL-1beta enhances antigen-mediated expansion of in vitro primed Th1, Th2, and Th17 cells transferred to IL-1R1(-/-) recipients. The IL-1 receptor antagonist diminished responses to antigen plus lipopolysaccharide (LPS) by approximately 55%. These results indicate that IL-1beta signaling in T cells markedly induces robust and durable primary and secondary CD4 responses.


Assuntos
Antígenos/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Interleucina-1/imunologia , Animais , Antígenos CD28/imunologia , Proliferação de Células , Feminino , Imunoglobulinas/imunologia , Memória Imunológica/imunologia , Interleucina-17/imunologia , Interleucina-6/imunologia , Camundongos , Camundongos Knockout , Receptores Tipo I de Interleucina-1/deficiência , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/imunologia , Receptores Tipo I de Interleucina-1/metabolismo
5.
Cell Rep ; 38(3): 110268, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35045289

RESUMO

Dysregulated homeostasis of neural activity has been hypothesized to drive Alzheimer's disease (AD) pathogenesis. AD begins with a decades-long presymptomatic phase, but whether homeostatic mechanisms already begin failing during this silent phase is unknown. We show that before the onset of memory decline and sleep disturbances, familial AD (fAD) model mice display no deficits in CA1 mean firing rate (MFR) during active wakefulness. However, homeostatic down-regulation of CA1 MFR is disrupted during non-rapid eye movement (NREM) sleep and general anesthesia in fAD mouse models. The resultant hyperexcitability is attenuated by the mitochondrial dihydroorotate dehydrogenase (DHODH) enzyme inhibitor, which tunes MFR toward lower set-point values. Ex vivo fAD mutations impair downward MFR homeostasis, resulting in pathological MFR set points in response to anesthetic drug and inhibition blockade. Thus, firing rate dyshomeostasis of hippocampal circuits is masked during active wakefulness but surfaces during low-arousal brain states, representing an early failure of the silent disease stage.


Assuntos
Doença de Alzheimer/fisiopatologia , Vias Neurais/fisiopatologia , Sono/fisiologia , Vigília/fisiologia , Anestesia Geral , Animais , Modelos Animais de Doenças , Camundongos , Inconsciência/induzido quimicamente , Inconsciência/fisiopatologia
6.
Neuron ; 102(5): 1009-1024.e8, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31047779

RESUMO

Maintaining average activity within a set-point range constitutes a fundamental property of central neural circuits. However, whether and how activity set points are regulated remains unknown. Integrating genome-scale metabolic modeling and experimental study of neuronal homeostasis, we identified mitochondrial dihydroorotate dehydrogenase (DHODH) as a regulator of activity set points in hippocampal networks. The DHODH inhibitor teriflunomide stably suppressed mean firing rates via synaptic and intrinsic excitability mechanisms by modulating mitochondrial Ca2+ buffering and spare respiratory capacity. Bi-directional activity perturbations under DHODH blockade triggered firing rate compensation, while stabilizing firing to the lower level, indicating a change in the firing rate set point. In vivo, teriflunomide decreased CA3-CA1 synaptic transmission and CA1 mean firing rate and attenuated susceptibility to seizures, even in the intractable Dravet syndrome epilepsy model. Our results uncover mitochondria as a key regulator of activity set points, demonstrate the differential regulation of set points and compensatory mechanisms, and propose a new strategy to treat epilepsy.


Assuntos
Cálcio/metabolismo , Crotonatos/farmacologia , Epilepsias Mioclônicas/metabolismo , Hipocampo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Convulsões/metabolismo , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Toluidinas/farmacologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/metabolismo , Di-Hidro-Orotato Desidrogenase , Modelos Animais de Doenças , Suscetibilidade a Doenças , Técnicas de Silenciamento de Genes , Hipocampo/metabolismo , Homeostase , Hidroxibutiratos , Camundongos , Mitocôndrias/metabolismo , Nitrilas , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Sinapses/metabolismo , Transmissão Sináptica/genética
7.
Neuron ; 89(3): 583-97, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26804996

RESUMO

The insulin-like growth factor-1 receptor (IGF-1R) signaling is a key regulator of lifespan, growth, and development. While reduced IGF-1R signaling delays aging and Alzheimer's disease progression, whether and how it regulates information processing at central synapses remains elusive. Here, we show that presynaptic IGF-1Rs are basally active, regulating synaptic vesicle release and short-term plasticity in excitatory hippocampal neurons. Acute IGF-1R blockade or transient knockdown suppresses spike-evoked synaptic transmission and presynaptic cytosolic Ca(2+) transients, while promoting spontaneous transmission and resting Ca(2+) level. This dual effect on transmitter release is mediated by mitochondria that attenuate Ca(2+) buffering in the absence of spikes and decrease ATP production during spiking activity. We conclude that the mitochondria, activated by IGF-1R signaling, constitute a critical regulator of information processing in hippocampal neurons by maintaining evoked-to-spontaneous transmission ratio, while constraining synaptic facilitation at high frequencies. Excessive IGF-1R tone may contribute to hippocampal hyperactivity associated with Alzheimer's disease.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/citologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Receptor IGF Tipo 1/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Hipocampo/fisiologia , Fator de Crescimento Insulin-Like I/fisiologia , Camundongos , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/metabolismo , Cultura Primária de Células , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/deficiência , Transdução de Sinais/fisiologia , Vesículas Sinápticas/metabolismo
8.
Cell Rep ; 7(5): 1560-1576, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24835997

RESUMO

Accumulation of amyloid-ß peptides (Aß), the proteolytic products of the amyloid precursor protein (APP), induces a variety of synaptic dysfunctions ranging from hyperactivity to depression that are thought to cause cognitive decline in Alzheimer's disease. While depression of synaptic transmission has been extensively studied, the mechanisms underlying synaptic hyperactivity remain unknown. Here, we show that Aß40 monomers and dimers augment release probability through local fine-tuning of APP-APP interactions at excitatory hippocampal boutons. Aß40 binds to the APP, increases the APP homodimer fraction at the plasma membrane, and promotes APP-APP interactions. The APP activation induces structural rearrangements in the APP/Gi/o-protein complex, boosting presynaptic calcium flux and vesicle release. The APP growth-factor-like domain (GFLD) mediates APP-APP conformational changes and presynaptic enhancement. Thus, the APP homodimer constitutes a presynaptic receptor that transduces signal from Aß40 to glutamate release. Excessive APP activation may initiate a positive feedback loop, contributing to hippocampal hyperactivity in Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Terminações Pré-Sinápticas/metabolismo , Multimerização Proteica , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , Peptídeos beta-Amiloides/química , Animais , Cálcio/metabolismo , Células Cultivadas , Exocitose , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Hipocampo/citologia , Camundongos , Camundongos Endogâmicos BALB C , Fragmentos de Peptídeos/química , Terminações Pré-Sinápticas/fisiologia , Ratos , Ratos Sprague-Dawley
10.
J Cell Sci ; 120(Pt 24): 4377-87, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18042626

RESUMO

Endoplasmic reticulum-associated degradation (ERAD) eliminates aberrant proteins from the secretory pathway. Such proteins are retained in the endoplasmic reticulum and targeted for degradation by the ubiquitin-proteasome system. Cis-acting motifs can function in ERAD as retention signals, preventing vesicular export from the endoplasmic reticulum, or as degrons, targeting proteins for degradation. Here, we show that microstp, the C-terminal 20-residue tailpiece of the secretory IgM mus heavy chain, functions both as a portable retention signal and as an ERAD degron. Retention of microstp fusions of secreted versions of thyroid peroxidase and yellow fluorescent protein in the endoplasmic reticulum requires the presence of the penultimate cysteine of microstp. In its role as a portable degron, the microstp targets the retained proteins for ERAD but does not serve as an obligatory ubiquitin-conjugation site. Abolishing microstp glycosylation accelerates the degradation of both microstpCys-fused substrates, yet absence of the N-glycan eliminates the requirement for the penultimate cysteine in the retention and degradation of the unglycosylated yellow fluorescent protein. Hence, the dual role played by the microstpCys motif as a retention signal and as a degron can be attributed to distinct elements within this sequence.


Assuntos
Motivos de Aminoácidos , Retículo Endoplasmático/metabolismo , Imunoglobulina M/metabolismo , Cadeias mu de Imunoglobulina/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Proteínas/metabolismo , Substituição de Aminoácidos , Linhagem Celular , Glicosilação , Células HeLa , Humanos , Imunoglobulina M/química , Cadeias mu de Imunoglobulina/química , Iodeto Peroxidase/metabolismo , Proteínas Luminescentes/metabolismo , Polissacarídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Ubiquitina/metabolismo
11.
J Biol Chem ; 279(6): 3980-9, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-14607830

RESUMO

Dislocation of endoplasmic reticulum-associated degradation (ERAD) substrates from the endoplasmic reticulum (ER) lumen to cytosol is considered to occur in a single step that is tightly coupled to proteasomal degradation. Here we show that dislocation of luminal ERAD substrates occurs in two distinct consecutive steps. The first is passage across ER membrane to the ER cytosolic face, where substrates can accumulate as ubiquitin conjugates. In vivo, this step occurs despite proteasome inhibition but requires p97/Cdc48p because substrates remain entrapped in ER lumen and are prevented from ubiquitination in cdc48 yeast strain. The second dislocation step is the release of accumulated substrates to the cytosol. In vitro, this release requires active proteasome, consumes ATP, and relies on salt-removable ER-bound components, among them the ER-bound p97 and ER-bound proteasome, which specifically interact with the cytosol-facing substrates. An additional role for Cdc48p subsequent to ubiquitination is revealed in the cdc48 strain at permissive temperature, consistent with our finding that p97 recognizes luminal ERAD substrates through multiubiquitin. BiP interacts exclusively with ERAD substrates, suggesting a role for this chaperone in ERAD. We propose a model that assigns the cytosolic face of the ER as a midpoint to which luminal ERAD substrates emerge and p97/Cdc48p and the proteasome are recruited. Although p97/Cdc48p plays a dual role in dislocation and is involved both in passage of the substrate across ER membrane and subsequent to its ubiquitination, the proteasome takes part in the release of the substrate from the ER face to the cytosol en route to degradation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cisteína Endopeptidases/metabolismo , Retículo Endoplasmático/metabolismo , Complexos Multienzimáticos/metabolismo , Adenosina Trifosfatases , Animais , Células COS , Proteínas de Ciclo Celular/genética , Linhagem Celular , Cadeias mu de Imunoglobulina/genética , Cadeias mu de Imunoglobulina/metabolismo , Técnicas In Vitro , Membranas Intracelulares/metabolismo , Microssomos/metabolismo , Modelos Biológicos , Complexo de Endopeptidases do Proteassoma , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transfecção , Ubiquitina/metabolismo , Proteína com Valosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA