Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem Biol ; 20(7): 906-915, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38831036

RESUMO

Natural photosystems couple light harvesting to charge separation using a 'special pair' of chlorophyll molecules that accepts excitation energy from the antenna and initiates an electron-transfer cascade. To investigate the photophysics of special pairs independently of the complexities of native photosynthetic proteins, and as a first step toward creating synthetic photosystems for new energy conversion technologies, we designed C2-symmetric proteins that hold two chlorophyll molecules in closely juxtaposed arrangements. X-ray crystallography confirmed that one designed protein binds two chlorophylls in the same orientation as native special pairs, whereas a second designed protein positions them in a previously unseen geometry. Spectroscopy revealed that the chlorophylls are excitonically coupled, and fluorescence lifetime imaging demonstrated energy transfer. The cryo-electron microscopy structure of a designed 24-chlorophyll octahedral nanocage with a special pair on each edge closely matched the design model. The results suggest that the de novo design of artificial photosynthetic systems is within reach of current computational methods.


Assuntos
Clorofila , Clorofila/química , Clorofila/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Fotossíntese , Transferência de Energia , Microscopia Crioeletrônica , Conformação Proteica , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo
2.
Protein Sci ; 32(3): e4579, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36715022

RESUMO

In photosynthesis, pigment-protein complexes achieve outstanding photoinduced charge separation efficiencies through a set of strategies in which excited states delocalization over multiple pigments ("excitons") and charge-transfer states play key roles. These concepts, and their implementation in bioinspired artificial systems, are attracting increasing attention due to the vast potential that could be tapped by realizing efficient photochemical reactions. In particular, de novo designed proteins provide a diverse structural toolbox that can be used to manipulate the geometric and electronic properties of bound chromophore molecules. However, achieving excitonic and charge-transfer states requires closely spaced chromophores, a non-trivial aspect since a strong binding with the protein matrix needs to be maintained. Here, we show how a general-purpose artificial protein can be optimized via molecular dynamics simulations to improve its binding capacity of a chlorophyll derivative, achieving complexes in which chromophores form two closely spaced and strongly interacting dimers. Based on spectroscopy results and computational modeling, we demonstrate each dimer is excitonically coupled, and propose they display signatures of charge-transfer state mixing. This work could open new avenues for the rational design of chromophore-protein complexes with advanced functionalities.


Assuntos
Clorofila , Fotossíntese , Clorofila/química , Complexos de Proteínas Captadores de Luz/química , Simulação de Dinâmica Molecular
3.
Res Sq ; 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37131790

RESUMO

Natural photosystems couple light harvesting to charge separation using a "special pair" of chlorophyll molecules that accepts excitation energy from the antenna and initiates an electron-transfer cascade. To investigate the photophysics of special pairs independent of complexities of native photosynthetic proteins, and as a first step towards synthetic photosystems for new energy conversion technologies, we designed C2-symmetric proteins that precisely position chlorophyll dimers. X-ray crystallography shows that one designed protein binds two chlorophylls in a binding orientation matching native special pairs, while a second positions them in a previously unseen geometry. Spectroscopy reveals excitonic coupling, and fluorescence lifetime imaging demonstrates energy transfer. We designed special pair proteins to assemble into 24-chlorophyll octahedral nanocages; the design model and cryo-EM structure are nearly identical. The design accuracy and energy transfer function of these special pair proteins suggest that de novo design of artificial photosynthetic systems is within reach of current computational methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA