RESUMO
Mechanotransduction, the conversion of mechanical stimuli into electrical signals, is a fundamental process underlying essential physiological functions such as touch and pain sensing, hearing, and proprioception. Although the mechanisms for some of these functions have been identified, the molecules essential to the sense of pain have remained elusive. Here we report identification of TACAN (Tmem120A), an ion channel involved in sensing mechanical pain. TACAN is expressed in a subset of nociceptors, and its heterologous expression increases mechanically evoked currents in cell lines. Purification and reconstitution of TACAN in synthetic lipids generates a functional ion channel. Finally, a nociceptor-specific inducible knockout of TACAN decreases the mechanosensitivity of nociceptors and reduces behavioral responses to painful mechanical stimuli but not to thermal or touch stimuli. We propose that TACAN is an ion channel that contributes to sensing mechanical pain.
Assuntos
Canais Iônicos/fisiologia , Mecanotransdução Celular/genética , Nociceptores/metabolismo , Dor/genética , Tato/genética , Animais , Regulação da Expressão Gênica/genética , Humanos , Canais Iônicos/genética , Lipídeos/genética , Camundongos , Camundongos Knockout , Dor/fisiopatologia , Técnicas de Patch-Clamp , Estresse Mecânico , Tato/fisiologiaRESUMO
Spinal cord dorsal horn inhibition is critical to the processing of sensory inputs, and its impairment leads to mechanical allodynia. How this decreased inhibition occurs and whether its restoration alleviates allodynic pain are poorly understood. Here, we show that a critical step in the loss of inhibitory tone is the change in the firing pattern of inhibitory parvalbumin (PV)-expressing neurons (PVNs). Our results show that PV, a calcium-binding protein, controls the firing activity of PVNs by enabling them to sustain high-frequency tonic firing patterns. Upon nerve injury, PVNs transition to adaptive firing and decrease their PV expression. Interestingly, decreased PV is necessary and sufficient for the development of mechanical allodynia and the transition of PVNs to adaptive firing. This transition of the firing pattern is due to the recruitment of calcium-activated potassium (SK) channels, and blocking them during chronic pain restores normal tonic firing and alleviates chronic pain. Our findings indicate that PV is essential for controlling the firing pattern of PVNs and for preventing allodynia. Developing approaches to manipulate these mechanisms may lead to different strategies for chronic pain relief.
Assuntos
Dor Crônica , Parvalbuminas , Parvalbuminas/metabolismo , Animais , Dor Crônica/metabolismo , Dor Crônica/fisiopatologia , Camundongos , Neurônios/metabolismo , Neurônios/fisiologia , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Potenciais de Ação/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismoRESUMO
Parvalbumin-expressing interneurons (PVINs) play a crucial role within the dorsal horn of the spinal cord by preventing touch inputs from activating pain circuits. In both male and female mice, nerve injury decreases PVINs' output via mechanisms that are not fully understood. In this study, we show that PVINs from nerve-injured male mice change their firing pattern from tonic to adaptive. To examine the ionic mechanisms responsible for this decreased output, we used a reparametrized Hodgkin-Huxley type model of PVINs, which predicted (1) the firing pattern transition is because of an increased contribution of small conductance calcium-activated potassium (SK) channels, enabled by (2) impairment in intracellular calcium buffering systems. Analyzing the dynamics of the Hodgkin-Huxley type model further demonstrated that a generalized Hopf bifurcation differentiates the two types of state transitions observed in the transient firing of PVINs. Importantly, this predicted mechanism holds true when we embed the PVIN model within the neuronal circuit model of the spinal dorsal horn. To experimentally validate this hypothesized mechanism, we used pharmacological modulators of SK channels and demonstrated that (1) tonic firing PVINs from naive male mice become adaptive when exposed to an SK channel activator, and (2) adapting PVINs from nerve-injured male mice return to tonic firing on SK channel blockade. Our work provides important insights into the cellular mechanism underlying the decreased output of PVINs in the spinal dorsal horn after nerve injury and highlights potential pharmacological targets for new and effective treatment approaches to neuropathic pain.SIGNIFICANCE STATEMENT Parvalbumin-expressing interneurons (PVINs) exert crucial inhibitory control over Aß fiber-mediated nociceptive pathways at the spinal dorsal horn. The loss of their inhibitory tone leads to neuropathic symptoms, such as mechanical allodynia, via mechanisms that are not fully understood. This study identifies the reduced intrinsic excitability of PVINs as a potential cause for their decreased inhibitory output in nerve-injured condition. Combining computational and experimental approaches, we predict a calcium-dependent mechanism that modulates PVINs' electrical activity following nerve injury: a depletion of cytosolic calcium buffer allows for the rapid accumulation of intracellular calcium through the active membranes, which in turn potentiates SK channels and impedes spike generation. Our results therefore pinpoint SK channels as potential therapeutic targets for treating neuropathic symptoms.
Assuntos
Cálcio , Neuralgia , Camundongos , Masculino , Feminino , Animais , Parvalbuminas/metabolismo , Neuralgia/metabolismo , Interneurônios/fisiologia , Corno Dorsal da Medula Espinal/metabolismoRESUMO
Autosomal-dominant polycystic kidney disease, the most frequent monogenic cause of kidney failure, is induced by mutations in the PKD1 or PKD2 genes, encoding polycystins TRPP1 and TRPP2, respectively. Polycystins are proposed to form a flow-sensitive ion channel complex in the primary cilium of both epithelial and endothelial cells. However, how polycystins contribute to cellular mechanosensitivity remains obscure. Here, we show that TRPP2 inhibits stretch-activated ion channels (SACs). This specific effect is reversed by coexpression with TRPP1, indicating that the TRPP1/TRPP2 ratio regulates pressure sensing. Moreover, deletion of TRPP1 in smooth muscle cells reduces SAC activity and the arterial myogenic tone. Inversely, depletion of TRPP2 in TRPP1-deficient arteries rescues both SAC opening and the myogenic response. Finally, we show that TRPP2 interacts with filamin A and demonstrate that this actin crosslinking protein is critical for SAC regulation. This work uncovers a role for polycystins in regulating pressure sensing.
Assuntos
Pressão , Canais de Cátion TRPP/metabolismo , Actinas/metabolismo , Animais , Proteínas Contráteis/metabolismo , Filaminas , Mecanotransdução Celular , Camundongos , Proteínas dos Microfilamentos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Pressorreceptores/metabolismoRESUMO
Mechanoperception, the ability to perceive and respond to mechanical stimuli, is a common and fundamental property of all forms of life. Vascular plants such as Mimosa pudica use this function to protect themselves against herbivory. The mechanical stimulus caused by a landing insect triggers a rapid closing of the leaflets that drives the potential pest away. While this thigmonastic movement is caused by ion fluxes accompanied by a rapid change of volume in the pulvini, the mechanism responsible for the detection of the mechanical stimulus remains poorly understood. Here, we examined the role of mechanosensitive ion channels in the first step of this evolutionarily conserved defense mechanism: the mechanically evoked closing of the leaflet. Our results demonstrate that the key site of mechanosensation in the Mimosa leaflets is the pulvinule, which expresses a stretch-activated chloride-permeable mechanosensitive ion channel. Blocking these channels partially prevents the closure of the leaflets following mechanical stimulation. These results demonstrate a direct relation between the activity of mechanosensitive ion channels and a central defense mechanism of M. pudica.
Assuntos
Canais Iônicos/fisiologia , Mimosa/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/fisiologia , Mecanotransdução Celular , Pulvínulo/fisiologiaRESUMO
Our ability to sense mechanical cues from our environment depend on the capacity of molecular sensor capable of converting mechanical energy into biochemical or electrical signals. This process, termed mechanotransduction, relies on the activity of mechanosensitive ion channels (MSCs) that are expressed in most tissues, including cells of the inner and outer ear, sensory and sympathetic neurons, and vascular cells. However, the precise role these channels play in the physiology of the cells and organs, where they are expressed is not completely understood. In this review, we will explore some of the recent findings on the role of MSCs to our sense of mechanical pain.
Assuntos
Canais Iônicos/fisiologia , Mecanotransdução Celular/fisiologia , Nociceptividade/fisiologia , Dor/fisiopatologia , Fenômenos Fisiológicos Vegetais , Animais , HumanosRESUMO
A response to environmental stress is critical to alleviate cellular injury and maintain cellular homeostasis. Eukaryotic initiation factor 2 (eIF2) is a key integrator of cellular stress responses and an important regulator of mRNA translation. Diverse stress signals lead to the phosphorylation of the α subunit of eIF2 (Ser51), resulting in inhibition of global protein synthesis while promoting expression of proteins that mediate cell adaptation to stress. Here we report that eIF2α is instrumental in the control of noxious heat sensation. Mice with decreased eIF2α phosphorylation (eIF2α+/S51A) exhibit reduced responses to noxious heat. Pharmacological attenuation of eIF2α phosphorylation decreases thermal, but not mechanical, pain sensitivity, whereas increasing eIF2α phosphorylation has the opposite effect on thermal nociception. The impact of eIF2α phosphorylation (p-eIF2α) on thermal thresholds is dependent on the transient receptor potential vanilloid 1. Moreover, we show that induction of eIF2α phosphorylation in primary sensory neurons in a chronic inflammation pain model contributes to thermal hypersensitivity. Our results demonstrate that the cellular stress response pathway, mediated via p-eIF2α, represents a mechanism that could be used to alleviate pathological heat sensation.
Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Nociceptividade , Temperatura , Animais , Comportamento Animal , Biomarcadores , Cálcio/metabolismo , Células Cultivadas , Fator de Iniciação 2 em Eucariotos/genética , Gânglios Espinais/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Imagem Molecular , Neurônios/metabolismo , Dor/etiologia , Dor/metabolismo , Limiar da Dor , Fosforilação , Transdução de Sinais , Medula Espinal/metabolismo , Estresse Fisiológico , Canais de Cátion TRPV/metabolismo , eIF-2 Quinase/metabolismoRESUMO
Natural products that elicit discomfort or pain represent invaluable tools for probing molecular mechanisms underlying pain sensation. Plant-derived irritants have predominated in this regard, but animal venoms have also evolved to avert predators by targeting neurons and receptors whose activation produces noxious sensations. As such, venoms provide a rich and varied source of small molecule and protein pharmacophores that can be exploited to characterize and manipulate key components of the pain-signalling pathway. With this in mind, here we perform an unbiased in vitro screen to identify snake venoms capable of activating somatosensory neurons. Venom from the Texas coral snake (Micrurus tener tener), whose bite produces intense and unremitting pain, excites a large cohort of sensory neurons. The purified active species (MitTx) consists of a heteromeric complex between Kunitz- and phospholipase-A2-like proteins that together function as a potent, persistent and selective agonist for acid-sensing ion channels (ASICs), showing equal or greater efficacy compared with acidic pH. MitTx is highly selective for the ASIC1 subtype at neutral pH; under more acidic conditions (pH < 6.5), MitTx massively potentiates (>100-fold) proton-evoked activation of ASIC2a channels. These observations raise the possibility that ASIC channels function as coincidence detectors for extracellular protons and other, as yet unidentified, endogenous factors. Purified MitTx elicits robust pain-related behaviour in mice by activation of ASIC1 channels on capsaicin-sensitive nerve fibres. These findings reveal a mechanism whereby snake venoms produce pain, and highlight an unexpected contribution of ASIC1 channels to nociception.
Assuntos
Venenos Elapídicos/química , Venenos Elapídicos/farmacologia , Elapidae , Proteínas do Tecido Nervoso/metabolismo , Dor/induzido quimicamente , Multimerização Proteica , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Sequência de Aminoácidos , Animais , Capsaicina/farmacologia , Células Cultivadas , Membro Posterior/efeitos dos fármacos , Membro Posterior/fisiopatologia , Humanos , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Nociceptividade/efeitos dos fármacos , Nociceptividade/fisiologia , Oócitos , Dor/metabolismo , Dor/fisiopatologia , Estrutura Quaternária de Proteína , Prótons , Ratos , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Agonistas de Canais de Sódio , Canais de Sódio/deficiência , Canais de Sódio/genética , Canais de Cátion TRPV/metabolismo , Xenopus laevisRESUMO
There is continuing controversy relating to the primary afferent neurotransmitter that conveys itch signals to the spinal cord. Here, we investigated the DRG and spinal cord expression of the putative primary afferent-derived "itch" neurotransmitter, gastrin-releasing peptide (GRP). Using ISH, qPCR, and immunohistochemistry, we conclude that GRP is expressed abundantly in spinal cord, but not in DRG neurons. Titration of the most commonly used GRP antiserum in tissues from wild-type and GRP mutant mice indicates that the antiserum is only selective for GRP at high dilutions. Paralleling these observations, we found that a GRPeGFP transgenic reporter mouse has abundant expression in superficial dorsal horn neurons, but not in the DRG. In contrast to previous studies, neither dorsal rhizotomy nor an intrathecal injection of capsaicin, which completely eliminated spinal cord TRPV1-immunoreactive terminals, altered dorsal horn GRP immunoreactivity. Unexpectedly, however, peripheral nerve injury induced significant GRP expression in a heterogeneous population of DRG neurons. Finally, dual labeling and retrograde tracing studies showed that GRP-expressing neurons of the superficial dorsal horn are predominantly interneurons, that a small number coexpress protein kinase C gamma (PKCγ), but that none coexpress the GRP receptor (GRPR). Our studies support the view that pruritogens engage spinal cord "itch" circuits via excitatory superficial dorsal horn interneurons that express GRP and that likely target GRPR-expressing interneurons. The fact that peripheral nerve injury induced de novo GRP expression in DRG neurons points to a novel contribution of this peptide to pruritoceptive processing in neuropathic itch conditions.
Assuntos
Peptídeo Liberador de Gastrina/metabolismo , Neurônios Aferentes/metabolismo , Medula Espinal/metabolismo , Animais , Anticorpos/imunologia , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Peptídeo Liberador de Gastrina/genética , Peptídeo Liberador de Gastrina/imunologia , Imunoquímica/métodos , Imunoquímica/normas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sensibilidade e Especificidade , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismoRESUMO
OBJECTIVE: In resistance arteries, diameter adjustment in response to pressure changes depends on the vascular cytoskeleton integrity. Serum response factor (SRF) is a dispensable transcription factor for cellular growth, but its role remains unknown in resistance arteries. We hypothesized that SRF is required for appropriate microvascular contraction. METHODS AND RESULTS: We used mice in which SRF was specifically deleted in smooth muscle or endothelial cells, and their control. Myogenic tone and pharmacological contraction was determined in resistance arteries. mRNA and protein expression were assessed by quantitative real-time PCR (qRT-PCR) and Western blot. Actin polymerization was determined by confocal microscopy. Stress-activated channel activity was measured by patch clamp. Myogenic tone developing in response to pressure was dramatically decreased by SRF deletion (5.9±2.3%) compared with control (16.3±3.2%). This defect was accompanied by decreases in actin polymerization, filamin A, myosin light chain kinase and myosin light chain expression level, and stress-activated channel activity and sensitivity in response to pressure. Contractions induced by phenylephrine or U46619 were not modified, despite a higher sensitivity to p38 blockade; this highlights a compensatory pathway, allowing normal receptor-dependent contraction. CONCLUSIONS: This study shows for the first time that SRF has a major part to play in the control of local blood flow via its central role in pressure-induced myogenic tone in resistance arteries.
Assuntos
Pressão Arterial , Músculo Liso Vascular/metabolismo , Fator de Resposta Sérica/metabolismo , Cauda/irrigação sanguínea , Resistência Vascular , Vasodilatação , Actinas/metabolismo , Animais , Pressão Arterial/efeitos dos fármacos , Artérias/metabolismo , Western Blotting , Sinalização do Cálcio , Proteínas Contráteis/metabolismo , Relação Dose-Resposta a Droga , Filaminas , Regulação da Expressão Gênica , Masculino , Mecanotransdução Celular , Potenciais da Membrana , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Microscopia Confocal , Músculo Liso Vascular/efeitos dos fármacos , Miografia , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Técnicas de Patch-Clamp , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Resposta Sérica/deficiência , Fator de Resposta Sérica/genética , Fatores de Tempo , Resistência Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
Characterizing neurons by their electrophysiological phenotypes is essential for understanding the neural basis of behavioral and cognitive functions. Technological developments have enabled the collection of hundreds of neural recordings; this calls for new tools capable of performing feature extraction efficiently. To address the urgent need for a powerful and accessible tool, we developed ElecFeX, an open-source MATLAB-based toolbox that (1) has an intuitive graphical user interface, (2) provides customizable measurements for a wide range of electrophysiological features, (3) processes large-size datasets effortlessly via batch analysis, and (4) yields formatted output for further analysis. We implemented ElecFeX on a diverse set of neural recordings; demonstrated its functionality, versatility, and efficiency in capturing electrical features; and established its significance in distinguishing neuronal subgroups across brain regions and species. ElecFeX is thus presented as a user-friendly toolbox to benefit the neuroscience community by minimizing the time required for extracting features from their electrophysiological datasets.
Assuntos
Fenômenos Eletrofisiológicos , Análise de Célula Única , Software , Fenômenos Eletrofisiológicos/fisiologia , Animais , Análise de Célula Única/métodos , Neurônios/fisiologia , Humanos , Encéfalo/fisiologia , Camundongos , RatosRESUMO
Sensory neurons in the dorsal root ganglion (DRG) and trigeminal ganglion (TG) are specialized to detect and transduce diverse environmental stimuli to the central nervous system. Single-cell RNA sequencing has provided insights into the diversity of sensory ganglia cell types in rodents, nonhuman primates, and humans, but it remains difficult to compare cell types across studies and species. We thus constructed harmonized atlases of the DRG and TG that describe and facilitate comparison of 18 neuronal and 11 non-neuronal cell types across six species and 31 datasets. We then performed single-cell/nucleus RNA sequencing of DRG from both human and the highly regenerative axolotl and found that the harmonized atlas also improves cell type annotation, particularly of sparse neuronal subtypes. We observed that the transcriptomes of sensory neuron subtypes are broadly similar across vertebrates, but the expression of functionally important neuropeptides and channels can vary notably. The resources presented here can guide future studies in comparative transcriptomics, simplify cell-type nomenclature differences across studies, and help prioritize targets for future analgesic development.
Assuntos
Gânglios Espinais , Transcriptoma , Gânglio Trigeminal , Animais , Humanos , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Gânglio Trigeminal/citologia , Gânglio Trigeminal/metabolismo , Análise de Célula Única/métodos , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/citologia , Especificidade da Espécie , Camundongos , Atlas como Assunto , Perfilação da Expressão Gênica , RatosRESUMO
Spinal cord circuits that process cold inputs from the periphery are poorly understood. In this issue of Neuron, Albisetti et al.1 identify a subset of inhibitory interneurons essential to this function.
Assuntos
Interneurônios , Medula Espinal , Medula Espinal/fisiologia , Interneurônios/fisiologiaRESUMO
Leaf movement in vascular plants is executed by joint-like structures called pulvini. Many structural features of pulvini have been described at subcellular, cellular, and tissue scales of organization; however, how the characteristic hierarchical architecture of plant tissue influences pulvinus-mediated actuation remains poorly understood. To investigate the influence of multiscale structure on turgor-driven pulvinus movements, we visualized Mimosa pudica pulvinus morphology and anatomy at multiple hierarchical scales of organization and used osmotic perturbations to experimentally swell pulvini in incremental states of dissection. We observed directional cellulose microfibril reinforcement, oblong, spindle-shaped primary pit fields, and longitudinally slightly compressed cell geometries in the parenchyma of M. pudica. Consistent with these observations, isolated parenchyma tissues displayed highly anisotropic swelling behaviors indicating a high degree of mechanical anisotropy. Swelling behaviors at higher scales of pulvinus organization were also influenced by the presence of the pulvinus epidermis, which displayed oblong epidermal cells oriented transverse to the pulvinus long axis. Our findings indicate that structural specializations spanning multiple hierarchical scales of organization guide hydraulic deformation of pulvini, suggesting that multiscale mechanics are crucial to the translation of cell-level turgor variations into organ-scale pulvinus motion in vivo.
Assuntos
Mimosa , Pulvínulo , Anisotropia , Pulvínulo/ultraestrutura , Folhas de Planta , Mimosa/anatomia & histologia , MovimentoRESUMO
Introduction: Stings from the lionfish (Pterois volitans) constitute one of the most painful wounds in the ocean. This species has invaded the Atlantic coast of the United States, Gulf of Mexico, Caribbean, and Mediterranean Sea. In addition to its ecological impact on local fish populations, stings from the lionfish pose a medical problem because of the debilitating nature of the pain they produce. However, there are no studies examining the human pain experience of lionfish stings. Objective: To characterize the various aspects of the pain experience following a lionfish sting. Methods: We developed a pain questionnaire that includes validated scales used with patients having acute or chronic pain to understand the pain variability, as well as the use of health care resources and treatments. Results: We provide the first study of the pain experience from lionfish stings. Here, we show that the pain is intense from the start and peaks approximately 1 hour later, resolving itself in 7 days for most victims. Furthermore, pain intensity can be influenced by several factors, including (1) age of the victim, where older victims experience significantly higher pain intensities, (2) the number of spines involved, (3) and whether infection occurred at the injury site. However, pain intensity was not different between male and female participants. Conclusion: These findings will inform the medical community on the pain experience and can be used by local authorities to better appreciate the impact of lionfish envenomations to develop programs aimed at curtailing the expansion of the lionfish.
RESUMO
Chronic primary orofacial pain (OFP) conditions such as painful temporomandibular disorders (pTMDs; i.e., myofascial pain and arthralgia), idiopathic trigeminal neuralgia (TN), and burning mouth syndrome (BMS) are seemingly idiopathic, but evidence support complex and multifactorial etiology and pathophysiology. Important fragments of this complex array of factors have been identified over the years largely with the help of preclinical studies. However, findings have yet to translate into better pain care for chronic OFP patients. The need to develop preclinical assays that better simulate the etiology, pathophysiology, and clinical symptoms of OFP patients and to assess OFP measures consistent with their clinical symptoms is a challenge that needs to be overcome to support this translation process. In this review, we describe rodent assays and OFP pain measures that can be used in support of chronic primary OFP research, in specific pTMDs, TN, and BMS. We discuss their suitability and limitations considering the current knowledge of the etiology and pathophysiology of these conditions and suggest possible future directions. Our goal is to foster the development of innovative animal models with greater translatability and potential to lead to better care for patients living with chronic primary OFP.
RESUMO
Despite the high prevalence of chronic pain as a disease in our society, there is a lack of effective treatment options for patients living with this condition. Gene therapies using recombinant AAVs are a direct method to selectively express genes of interest in target cells with the potential of, in the case of nociceptors, reducing neuronal firing in pain conditions. We designed a recombinant AAV vector expressing cargos whose expression was driven by a portion of the SCN10A (NaV1.8) promoter, which is predominantly active in nociceptors. We validated its specificity for nociceptors in mouse and human dorsal root ganglia and showed that it can drive the expression of functional proteins. Our viral vector and promoter package drove the expression of both excitatory or inhibitory DREADDs in primary human DRG cultures and in whole cell electrophysiology experiments, increased or decreased neuronal firing, respectively. Taken together, we present a novel viral tool that drives expression of cargo specifically in human nociceptors. This will allow for future specific studies of human nociceptor properties as well as pave the way for potential future gene therapies for chronic pain.
RESUMO
Nature's library of venoms is a vast and untapped resource that has the potential of becoming the source of a wide variety of new drugs and therapeutics. The discovery of these valuable molecules, hidden in diverse collections of different venoms, requires highly specific genetic and proteomic sequencing techniques. These have been used to sequence a variety of venom glands from species ranging from snakes to scorpions, and some marine species. In addition to identifying toxin sequences, these techniques have paved the way for identifying various novel evolutionary links between species that were previously thought to be unrelated. Furthermore, proteomics-based techniques have allowed researchers to discover how specific toxins have evolved within related species, and in the context of environmental pressures. These techniques allow groups to discover novel proteins, identify mutations of interest, and discover new ways to modify toxins for biomimetic purposes and for the development of new therapeutics.
Assuntos
Evolução Molecular , Perfilação da Expressão Gênica , Proteoma , Proteômica , Transcriptoma , Peçonhas/genética , Peçonhas/metabolismo , Animais , Filogenia , Especificidade da EspécieRESUMO
Despite the central physiological importance of cardiovascular mechanotransduction, the molecular identities of the sensors and the signaling pathways have long remained elusive. Indeed, how pressure is transduced into cellular excitation has only recently started to emerge. In both arterial and cardiac myocytes, the diacylglycerol-sensitive canonical transient receptor potential (TRPC) subunits are proposed to underlie the stretch-activated depolarizing cation channels. An indirect mechanism of activation through a ligand-independent conformational switch of Gq-coupled receptors by mechanical stress is invoked. Such a mechanism involving the angiotensin type 1 receptor and TRPC6 is proposed to trigger the arterial myogenic response to intraluminal pressure. TRPC6 is also involved in load-induced cardiac hypertrophy. In this review, we will focus on the molecular basis of pressure sensing in the cardiovascular system and associated disease states.