Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 9(11): 1283-1297, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34426457

RESUMO

Suppressive myeloid cells inhibit antitumor immunity by preventing T-cell responses. Immunoglobulin-like transcript 3 (ILT3; also known as LILRB4) is highly expressed on tumor-associated myeloid cells and promotes their suppressive phenotype. However, the ligand that engages ILT3 within the tumor microenvironment and renders tumor-associated myeloid cells suppressive is unknown. Using a screening approach, we identified fibronectin as a functional ligand for ILT3. The interaction of fibronectin with ILT3 polarized myeloid cells toward a suppressive state, and these effects were reversed with an ILT3-specific antibody that blocked the interaction of ILT3 with fibronectin. Furthermore, ex vivo treatment of human tumor explants with anti-ILT3 reprogrammed tumor-associated myeloid cells toward a stimulatory phenotype. Thus, the ILT3-fibronectin interaction represents a "stromal checkpoint" through which the extracellular matrix actively suppresses myeloid cells. By blocking this interaction, tumor-associated myeloid cells may acquire a stimulatory phenotype, potentially resulting in increased antitumor T-cell responses.


Assuntos
Fibronectinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Células Mieloides/metabolismo , Receptores Imunológicos/metabolismo , Diferenciação Celular , Linhagem Celular , Humanos
2.
J Biol Chem ; 277(8): 5796-803, 2002 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-11741926

RESUMO

Based on the kinetic model of substrate phage proteolysis, we have formulated a strategy for best manipulating the conditions in screening phage display libraries for protease substrates (Sharkov, N. A., Davis, R. M., Reidhaar-Olson, J. F., Navre, M., and Cai, D. (2001) J. Biol. Chem. 276, 10788-10793). This strategy is exploited in the present study with signal peptidase SpsB from Staphylococcus aureus. We demonstrate that highly active substrate phage clones can be isolated from a phage display library by systematically tuning the selection stringency in screening. Several of the selected clones exhibit superior reactivity over a control, the best clone, SIIIRIII-8, showing >100-fold improvement. Because no conserved sequence features were readily revealed that could allow delineation of the active and unreactive clones, the sequences identified in five of the active clones were tested as synthetic dodecamers, Ac-AGX(8)GA-NH(2). Using electrospray ionization mass spectrometry, we show that four of these peptides can be cleaved by SpsB and that Ala is the P1 residue exclusively and Ala or Leu the P3 residue, in keeping with the (-3, -1) rule for substrate recognition by signal peptidase. Our successful screening with SpsB demonstrated the general applicability of the screening strategy and allowed us to isolate the first peptide substrates for the enzyme.


Assuntos
Proteínas de Membrana , Serina Endopeptidases/metabolismo , Staphylococcus aureus/enzimologia , Sequência de Aminoácidos , Clonagem Molecular , Primers do DNA , Escherichia coli/genética , Cinética , Dados de Sequência Molecular , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/síntese química , Biblioteca de Peptídeos , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA