Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830037

RESUMO

Two genes, HvSAP8 and HvSAP16, encoding Zinc-finger proteins, were identified earlier as active in barley plants. Based on bioinformatics and sequencing analysis, six SNPs were found in the promoter regions of HvSAP8 and one in HvSAP16, among parents of two barley segregating populations, Granal × Baisheshek and Natali × Auksiniai-2. ASQ and Amplifluor markers were developed for HvSAP8 and HvSAP16, one SNP in each gene, and in each of two populations, showing simple Mendelian segregation. Plants of F6 selected breeding lines and parents were evaluated in a soil-based drought screen, revealing differential expression of HvSAP8 and HvSAP16 corresponding with the stress. After almost doubling expression during the early stages of stress, HvSAP8 returned to pre-stress level or was strongly down-regulated in plants with Granal or Baisheshek genotypes, respectively. For HvSAP16 under drought conditions, a high expression level was followed by either a return to original levels or strong down-regulation in plants with Natali or Auksiniai-2 genotypes, respectively. Grain yield in the same breeding lines and parents grown under moderate drought was strongly associated with their HvSAP8 and HvSAP16 genotypes. Additionally, Granal and Natali genotypes with specific alleles at HvSAP8 and HvSAP16 were associated with improved performance under drought via higher 1000 grain weight and more shoots per plant, respectively.


Assuntos
Alelos , Regulação da Expressão Gênica de Plantas , Hordeum , Proteínas de Plantas , Polimorfismo de Nucleotídeo Único , Estresse Fisiológico/genética , Fatores de Transcrição , Desidratação , Hordeum/genética , Hordeum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco
2.
BMC Plant Biol ; 20(Suppl 1): 156, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33050881

RESUMO

BACKGROUND: A family of genes designated as the Zinc finger A20/AN1 Transcription factors encoding stress-associated proteins (SAP) are well described in Arabidopsis and rice, and include 14 AtSAP and 18 OsSAP genes that are associated with variable tolerances to multiple abiotic stresses. The SAP gene family displays a great diversity in its structure and across different plant species. The aim of this study was to identify all HvSAP genes in barley (Hordeum vulgare L.), to analyse the expression of selected genes in response to salinity in barley leaves and develop SNP marker for HvSAP12 to evaluate the association between genotypes of barley plants and their grain yield in field trials. RESULTS: In our study, 17 HvSAP genes were identified in barley, which were strongly homologous to rice genes. Five genes, HvSAP5, HvSAP6, HvSAP11, HvSAP12 and HvSAP15, were found to be highly expressed in leaves of barley plants in response to salt stress in hydroponics compared to controls, using both semi-quantitative RT-PCR and qPCR analyses. The Amplifluor-like SNP marker KATU-B30 was developed and used for HvSAP12 genotyping. A strong association (R2 = 0.85) was found between KATU-B30 and grain yield production per plant of 50 F3 breeding lines originating from the cross Granal × Baisheshek in field trials with drought and low to moderate salinity in Northern and Central Kazakhstan. CONCLUSIONS: A group of HvSAP genes, and HvSAP12 in particular, play an important role in the tolerance of barley plants to salinity and drought, and is associated with higher grain yield in field trials. Marker-assisted selection with SNP marker KATU-B30 can be applied in barley breeding to improve grain yield production under conditions of abiotic stress.


Assuntos
Hordeum/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Estresse Salino/genética , Dedos de Zinco/genética , Biologia Computacional , Marcadores Genéticos , Cazaquistão , Oryza/genética , Domínios Proteicos , Reação em Cadeia da Polimerase em Tempo Real , Especificidade da Espécie , Fatores de Transcrição/genética , Transcriptoma
3.
BMC Plant Biol ; 20(Suppl 1): 183, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33050887

RESUMO

BACKGROUND: Chickpea is an important legume and is moderately tolerant to salinity stress during the growing season. However, the level and mechanisms for salinity tolerance can vary among accessions and cultivars. A large family of CaRab-GTP genes, previously identified in chickpea, is homologous to intracellular vesicle trafficking superfamily genes that play essential roles in response to salinity stress in plants. RESULTS: To determine which of the gene family members are involved in the chickpea salt response, plants from six selected chickpea accessions (Genesis 836, Hattrick, ICC12726, Rupali, Slasher and Yubileiny) were exposed to salinity stress and expression profiles resolved for the major CaRab-GTP gene clades after 5, 9 and 15 days of salt exposure. Gene clade expression profiles (using degenerate primers targeting all members of each clade) were tested for their relationship to salinity tolerance measures, namely plant biomass and Na+ accumulation. Transcripts representing 11 out of the 13 CaRab clades could be detected by RT-PCR, but only six (CaRabA2, -B, -C, -D, -E and -H) could be quantified using qRT-PCR due to low expression levels or poor amplification efficiency of the degenerate primers for clades containing several gene members. Expression profiles of three gene clades, CaRabB, -D and -E, were very similar across all six chickpea accessions, showing a strongly coordinated network. Salt-induced enhancement of CaRabA2 expression at 15 days showed a very strong positive correlation (R2 = 0.905) with Na+ accumulation in leaves. However, salinity tolerance estimated as relative plant biomass production compared to controls, did not correlate with Na+ accumulation in leaves, nor with expression profiles of any of the investigated CaRab-GTP genes. CONCLUSION: A coordinated network of CaRab-GTP genes, which are likely involved in intracellular trafficking, are important for the salinity stress response of chickpea plants.


Assuntos
Cicer/genética , Cicer/metabolismo , Folhas de Planta/metabolismo , Cloreto de Sódio/farmacologia , Sódio/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Vesículas Citoplasmáticas/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas , Potássio/metabolismo , Tolerância ao Sal/genética
4.
Int J Mol Sci ; 21(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481694

RESUMO

All plants contain an alternative electron transport pathway (AP) in their mitochondria, consisting of the alternative oxidase (AOX) and type 2 NAD(P)H dehydrogenase (ND) families, that are thought to play a role in controlling oxidative stress responses at the cellular level. These alternative electron transport components have been extensively studied in plants like Arabidopsis and stress inducible isoforms identified, but we know very little about them in the important crop plant chickpea. Here we identify AP components in chickpea (Cicer arietinum) and explore their response to stress at the transcript level. Based on sequence similarity with the functionally characterized proteins of Arabidopsis thaliana, five putative internal (matrix)-facing NAD(P)H dehydrogenases (CaNDA1-4 and CaNDC1) and four putative external (inter-membrane space)-facing NAD(P)H dehydrogenases (CaNDB1-4) were identified in chickpea. The corresponding activities were demonstrated for the first time in purified mitochondria of chickpea leaves and roots. Oxidation of matrix NADH generated from malate or glycine in the presence of the Complex I inhibitor rotenone was high compared to other plant species, as was oxidation of exogenous NAD(P)H. In leaf mitochondria, external NADH oxidation was stimulated by exogenous calcium and external NADPH oxidation was essentially calcium dependent. However, in roots these activities were low and largely calcium independent. A salinity experiment with six chickpea cultivars was used to identify salt-responsive alternative oxidase and NAD(P)H dehydrogenase gene transcripts in leaves from a three-point time series. An analysis of the Na:K ratio and Na content separated these cultivars into high and low Na accumulators. In the high Na accumulators, there was a significant up-regulation of CaAOX1, CaNDB2, CaNDB4, CaNDA3 and CaNDC1 in leaf tissue under long term stress, suggesting the formation of a stress-modified form of the mitochondrial electron transport chain (mETC) in leaves of these cultivars. In particular, stress-induced expression of the CaNDB2 gene showed a striking positive correlation with that of CaAOX1 across all genotypes and time points. The coordinated salinity-induced up-regulation of CaAOX1 and CaNDB2 suggests that the mitochondrial alternative pathway of respiration is an important facet of the stress response in chickpea, in high Na accumulators in particular, despite high capacities for both of these activities in leaf mitochondria of non-stressed chickpeas.


Assuntos
Cicer/genética , Cicer/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Oxirredutases/genética , Proteínas de Plantas/genética , Estresse Salino , Cálcio/metabolismo , Transporte de Elétrons , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , NADPH Desidrogenase/metabolismo , Oxigênio/metabolismo , Fotossíntese , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Sódio/química , Especificidade da Espécie , Transcriptoma
5.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167455

RESUMO

Down-regulator associated protein, DrAp1, acts as a negative cofactor (NC2α) in a transcription repressor complex together with another subunit, down-regulator Dr1 (NC2ß). In binding to promotors and regulating the initiation of transcription of various genes, DrAp1 plays a key role in plant transition to flowering and ultimately in seed production. TaDrAp1 and TaDrAp2 genes were identified, and their expression and genetic polymorphism were studied using bioinformatics, qPCR analyses, a 40K Single nucleotide polymorphism (SNP) microarray, and Amplifluor-like SNP genotyping in cultivars of bread wheat (Triticum aestivum L.) and breeding lines developed from a cross between spelt (T. spelta L.) and bread wheat. TaDrAp1 was highly expressed under non-stressed conditions, and at flowering, TaDrAp1 expression was negatively correlated with yield capacity. TaDrAp2 showed a consistently low level of mRNA production. Drought caused changes in the expression of both TaDrAp1 and TaDrAp2 genes in opposite directions, effectively increasing expression in lower yielding cultivars. The microarray 40K SNP assay and Amplifluor-like SNP marker, revealed clear scores and allele discriminations for TaDrAp1 and TaDrAp2 and TaRht-B1 genes. Alleles of two particular homeologs, TaDrAp1-B4 and TaDrAp2-B1, co-segregated with grain yield in nine selected breeding lines. This indicated an important regulatory role for both TaDrAp1 and TaDrAp2 genes in plant growth, ontogenesis, and drought tolerance in bread and spelt wheat.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Fosfoproteínas/genética , Fatores de Transcrição/genética , Triticum/genética , Alelos , Secas , Genes de Plantas/genética , Fosfoproteínas/metabolismo , Melhoramento Vegetal/métodos , Desenvolvimento Vegetal/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sementes , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Triticum/metabolismo
7.
BMC Plant Biol ; 18(1): 135, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29940859

RESUMO

BACKGROUND: The relatively low efficiency of biolistic transformation and subsequent integration of multiple copies of the introduced gene/s significantly complicate the genetic modification of wheat (Triticum aestivum) and other plant species. One of the key factors contributing to the reproducibility of this method is the uniformity of the DNA/gold suspension, which is dependent on the coating procedure employed. It was also shown recently that the relative frequency of single copy transgene inserts could be increased through the use of nanogram quantities of the DNA during coating. RESULTS: A simplified DNA/gold coating method was developed to produce fertile transgenic plants, via microprojectile bombardment of callus cultures induced from immature embryos. In this method, polyethyleneglycol (PEG) and magnesium salt solutions were utilized in place of the spermidine and calcium chloride of the standard coating method, to precipitate the DNA onto gold microparticles. The prepared microparticles were used to generate transgenics from callus cultures of commercial bread wheat cv. Gladius resulting in an average transformation frequency of 9.9%. To increase the occurrence of low transgene copy number events, nanogram amounts of the minimal expression cassettes containing the gene of interest and the hpt gene were used for co-transformation. A total of 1538 transgenic wheat events were generated from 15,496 embryos across 19 independent experiments. The variation of single copy insert frequencies ranged from 16.1 to 73.5% in the transgenic wheat plants, which compares favourably to published results. CONCLUSIONS: The DNA/gold coating procedure presented here allows efficient, large scale transformation of wheat. The use of nanogram amounts of vector DNA improves the frequency of single copy transgene inserts in transgenic wheat plants.


Assuntos
Biolística/métodos , Mutagênese Insercional/métodos , Plantas Geneticamente Modificadas/genética , Triticum/genética , DNA de Plantas/genética , Ouro , Nanopartículas Metálicas , Triticum/crescimento & desenvolvimento
8.
Plant Cell Environ ; 41(11): 2549-2566, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29761511

RESUMO

Transcription factors regulate multiple networks, mediating the responses of organisms to stresses, including drought. Here, we investigated the role of the wheat transcription factor TaSHN1 in crop growth and drought tolerance. TaSHN1, isolated from bread wheat, was characterized for molecular interactions and functionality. The overexpression of TaSHN1 in wheat was followed by the evaluation of T2 and T3 transgenic lines for drought tolerance, growth, and yield components. Leaf surface changes were analysed by light microscopy, SEM, TEM, and GC-MS/GC-FID. TaSHN1 behaves as a transcriptional activator in a yeast transactivation assay and binds stress-related DNA cis-elements, determinants of which were revealed using 3D molecular modelling. The overexpression of TaSHN1 in transgenic wheat did not result in a yield penalty under the controlled plant growth conditions of a glasshouse. Transgenic lines had significantly lower stomatal density and leaf water loss and exhibited improved recovery after severe drought, compared with control plants. The comparative analysis of cuticular waxes revealed an increased accumulation of alkanes in leaves of transgenic lines. Our data demonstrate that TaSHN1 may operate as a positive modulator of drought stress tolerance. Positive attributes could be mediated through an enhanced accumulation of alkanes and reduced stomatal density.


Assuntos
Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Triticum/metabolismo , Desidratação , Cromatografia Gasosa-Espectrometria de Massas , Microscopia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Folhas de Planta/ultraestrutura , Proteínas de Plantas/fisiologia , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/fisiologia , Triticum/crescimento & desenvolvimento , Triticum/fisiologia
9.
Int J Mol Sci ; 19(3)2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29558397

RESUMO

Plants have a non-energy conserving bypass of the classical mitochondrial cytochrome c pathway, known as the alternative respiratory pathway (AP). This involves type II NAD(P)H dehydrogenases (NDs) on both sides of the mitochondrial inner membrane, ubiquinone, and the alternative oxidase (AOX). The AP components have been widely characterised from Arabidopsis, but little is known for monocot species. We have identified all the genes encoding components of the AP in rice and barley and found the key genes which respond to oxidative stress conditions. In both species, AOX is encoded by four genes; in rice OsAOX1a, 1c, 1d and 1e representing four clades, and in barley, HvAOX1a, 1c, 1d1 and 1d2, but no 1e. All three subfamilies of plant ND genes, NDA, NDB and NDC are present in both rice and barley, but there are fewer NDB genes compared to Arabidopsis. Cyanide treatment of both species, along with salt treatment of rice and drought treatment of barley led to enhanced expression of various AP components; there was a high level of co-expression of AOX1a and AOX1d, along with NDB3 during the stress treatments, reminiscent of the co-expression that has been well characterised in Arabidopsis for AtAOX1a and AtNDB2.


Assuntos
Hordeum/genética , Proteínas Mitocondriais/genética , NADH Desidrogenase/genética , Oryza/genética , Estresse Oxidativo , Oxirredutases/genética , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Hordeum/metabolismo , Proteínas Mitocondriais/metabolismo , NADH Desidrogenase/metabolismo , Oryza/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo
10.
BMC Plant Biol ; 17(1): 209, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29157217

RESUMO

BACKGROUND: Selecting for low concentration of Na+ in the shoot provides one approach for tackling salinity stress that adversely affects crop production. Novel alleles for Na+ exclusion can be identified and then introduced into elite crop cultivars. RESULTS: We have identified loci associated with lower Na+ concentration in leaves of durum wheat landraces originating from Afghanistan. Seedlings of two F2 populations derived from crossings between Australian durum wheat (Jandaroi) and two Afghani landraces (AUS-14740 and AUS-14752) were grown hydroponically and evaluated for Na+ and K+ concentration in the third leaf. High heritability was found for both third leaf Na+ concentration and the K+/Na+ ratio in both populations. Further work focussed on line AUS-14740. Bulk segregant analysis using 9 K SNP markers identified two loci significantly associated with third leaf Na+ concentration. Marker regression analysis showed a strong association between all traits studied and a favourable allele originating from AUS-14740 located on the long arm of chromosome 4B. CONCLUSIONS: The candidate gene in the relevant region of chromosome 4B is likely to be the high affinity K+ transporter B1 (HKT1;5-B1). A second locus associated with third leaf Na+ concentration was located on chromosome 3BL, with the favourable allele originating from Jandaroi; however, no candidate gene can be identified.


Assuntos
Plantas Tolerantes a Sal/genética , Sódio/metabolismo , Triticum/genética , Afeganistão , Cruzamentos Genéticos , Genes de Plantas/genética , Técnicas de Genotipagem , Hidroponia , Fenótipo , Folhas de Planta/química , Folhas de Planta/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Potássio/análise , Potássio/metabolismo , Locos de Características Quantitativas/genética , Tolerância ao Sal , Plantas Tolerantes a Sal/metabolismo , Sódio/análise , Triticum/metabolismo
11.
BMC Plant Biol ; 17(Suppl 2): 254, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29297326

RESUMO

BACKGROUND: KASP (KBioscience Competitive Allele Specific PCR) and Amplifluor (Amplification with fluorescence) SNP markers are two prominent technologies based upon a shared identical Allele-specific PCR platform. METHODS: Amplifluor-like SNP and KASP analysis was carried out using published and own design of Universal probes (UPs) and Gene-specific primers (GSPs). RESULTS: Advantages of the Amplifluor-like system over KASP include the significantly lower costs and much greater flexibility in the adjustment and development of 'self-designed' dual fluorescently-labelled UPs and regular GSPs. The presented results include optimisation of 'tail' length in UPs and GSPs, protocol adjustment, and the use of various fluorophores in different qPCR instruments. The compatibility of the KASP Master-mix in both original and Amplifluor-like systems has been demonstrated in the presented results, proving their similar principles. Results of SNP scoring with rare alleles in addition to more frequently occurring alleles are shown. CONCLUSIONS: The Amplifluor-like system produces SNP genotyping results with a level of sensitivity and accuracy comparable to KASP but at a significantly cheaper cost and with much greater flexibility for UPs with self-designed GSPs.


Assuntos
Técnicas de Genotipagem/métodos , Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Alelos , Marcadores Genéticos/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Reprodutibilidade dos Testes
12.
BMC Plant Biol ; 16 Suppl 1: 11, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26821936

RESUMO

BACKGROUND: Barley and bread wheat show large differences in frequencies of Single Nucleotide Polymorphism (SNP) as determined from genome-wide studies. These frequencies have been estimated as 2.4-3 times higher in the entire barley genome than within each diploid genomes of wheat (A, B or D). However, barley SNPs within individual genes occur significantly more frequently than quoted. Differences between wheat and barley are based on the origin and evolutionary history of the species. Bread wheat contains rarer SNPs due to the double genetic 'bottle-neck' created by natural hybridisation and spontaneous polyploidisation. Furthermore, wheat has the lowest level of useful SNP-derived markers while barley is estimated to have the highest level of polymorphism. RESULTS: Different strategies are required for the development of suitable molecular markers in these cereal species. For example, SNP markers based on high-throughput technology (Infinium or KASP) are very effective and useful in both barley and bread wheat. In contrast, Cleaved Amplified Polymorphic Sequences (CAPS) are more widely and successfully employed in small-scale experiments with highly polymorphic genetic regions containing multiple SNPs in barley, but not in wheat. However, preliminary 'in silico' search databases for assessing the potential value of SNPs have yet to be developed. CONCLUSIONS: This mini-review summarises results supporting the development of different strategies for the application of effective SNP and CAPS markers in wheat and barley.


Assuntos
Hordeum/genética , Polimorfismo Genético , Triticum/genética , Evolução Molecular , Marcadores Genéticos , Pesquisa em Genética , Polimorfismo de Nucleotídeo Único
13.
Plant Biotechnol J ; 14(1): 313-22, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25940960

RESUMO

Drought tolerance of the wheat cultivar Bobwhite was previously enhanced by transformation with a construct containing the wheat DREB3 gene driven by the stress-inducible maize Rab17 promoter. Progeny of a single T2 transgenic line were used as pollinators in crosses with four elite bread wheat cultivars from Western Australia: Bonnie Rock, IGW-2971, Magenta and Wyalkatchem, with the aim of evaluating transgene performance in different genetic backgrounds. The selected pollinator line, BW8-9-10-3, contained multiple transgene copies, had significantly improved drought tolerance compared with wild-type plants and showed no growth and development penalties or abnormalities. A single hybrid plant was selected from each cross-combination for three rounds of backcrossing with the corresponding maternal wheat cultivar. The transgene was detected in all four F1 BC3 combinations, but stress-inducible transgene expression was found in only three of the four combinations. Under well-watered conditions, the phenotypes and grain yield components of the F2 BC3 transgene-expressing lines were similar to those of corresponding recurrent parents and null-segregants. Under severe drought conditions, the backcross lines demonstrated 12-18% higher survival rates than the corresponding control plants. Two from four F3 BC3 transgenic lines showed significantly higher yield (18.9% and 21.5%) than control plants under limited water conditions. There was no induction of transgene expression under cold stress, and therefore, no improvement of frost tolerance observed in the progenies of drought-tolerant F3 BC3 lines.


Assuntos
Adaptação Fisiológica/genética , Pão , Cruzamentos Genéticos , Secas , Proteínas de Plantas/genética , Transgenes , Triticum/genética , Austrália , Segregação de Cromossomos/genética , Congelamento , Dosagem de Genes , Regulação da Expressão Gênica de Plantas , Hibridização Genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Triticum/crescimento & desenvolvimento , Triticum/fisiologia
14.
New Phytol ; 211(2): 671-87, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26990681

RESUMO

Homeodomain leucine zipper class I (HD-Zip I) transcription factors (TFs) play key roles in the regulation of plant growth and development under stresses. Functions of the TaHDZipI-2 gene isolated from the endosperm of developing wheat grain were revealed. Molecular characterization of TaHDZipI-2 protein included studies of its dimerisation, protein-DNA interactions and gene activation properties using pull-down assays, in-yeast methods and transient expression assays in wheat cells. The analysis of TaHDZipI-2 gene functions was performed using transgenic barley plants. It included comparison of developmental phenotypes, yield components, grain quality, frost tolerance and the levels of expression of potential target genes in transgenic and control plants. Transgenic TaHDZipI-2 lines showed characteristic phenotypic features that included reduced growth rates, reduced biomass, early flowering, light-coloured leaves and narrowly elongated spikes. Transgenic lines produced 25-40% more seeds per spike than control plants, but with 50-60% smaller grain size. In vivo lipid imaging exposed changes in the distribution of lipids between the embryo and endosperm in transgenic seeds. Transgenic lines were significantly more tolerant to frost than control plants. Our data suggest the role of TaHDZipI-2 in controlling several key processes underlying frost tolerance, transition to flowering and spike development.


Assuntos
Adaptação Fisiológica , Congelamento , Proteínas de Homeodomínio/metabolismo , Hordeum/genética , Hordeum/fisiologia , Zíper de Leucina , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hordeum/anatomia & histologia , Hordeum/crescimento & desenvolvimento , Lipídeos/análise , Fenótipo , Filogenia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Multimerização Proteica , Plântula/fisiologia , Sementes/anatomia & histologia , Sementes/fisiologia , Ativação Transcricional/genética , Transgenes
15.
J Exp Bot ; 67(1): 15-30, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26417020

RESUMO

Physiological aspects of acidity stress in plants (synonymous with H(+) rhizotoxicity or low-pH stress) have long been a focus of research, in particular with respect to acidic soils where aluminium and H(+) rhizotoxicities often co-occur. However, toxic H(+) and Al(3+) elicit different response mechanisms in plants, and it is important to consider their effects separately. The primary aim of this review was to provide the current state of knowledge regarding the genetics of the specific reactions to low-pH stress in growing plants. A comparison of the results gleaned from quantitative trait loci analysis and global transcriptome profiling of plants in response to high proton concentrations revealed a two-stage genetic response: (i) in the short-term, proton pump H(+)-ATPases present the first barrier in root cells, allocating an excess of H(+) into either the apoplast or vacuole; the ensuing defence signaling system involves auxin, salicylic acid, and methyl jasmonate, which subsequently initiate expression of STOP and DREB transcription factors as well as chaperone ROF; (2) the long-term response includes other genes, such as alternative oxidase and type II NAD(P)H dehydrogenase, which act to detoxify dangerous reactive oxygen species in mitochondria, and help plants better manage the stress. A range of transporter genes including those for nitrate (NTR1), malate (ALMT1), and heavy metals are often up-regulated by H(+) rhizotoxicity. Expansins, cell-wall-related genes, the γ-aminobutyric acid shunt and biochemical pH-stat genes also reflect changes in cell metabolism and biochemistry in acidic conditions. However, the genetics underlying the acidity stress response of plants is complicated and only fragmentally understood.


Assuntos
Minerais/toxicidade , Fenômenos Fisiológicos Vegetais , Plantas/genética , Prótons/efeitos adversos , Estresse Fisiológico , Arabidopsis/fisiologia , Produtos Agrícolas/fisiologia , Concentração de Íons de Hidrogênio
17.
J Exp Bot ; 66(21): 6635-50, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26220082

RESUMO

Heterotrimeric nuclear factors Y (NF-Ys) are involved in regulation of various vital functions in all eukaryotic organisms. Although a number of NF-Y subunits have been characterized in model plants, only a few have been functionally evaluated in crops. In this work, a number of genes encoding NF-YB and NF-YC subunits were isolated from drought-tolerant wheat (Triticum aestivum L. cv. RAC875), and the impact of the overexpression of TaNF-YB4 in the Australian wheat cultivar Gladius was investigated. TaNF-YB4 was isolated as a result of two consecutive yeast two-hybrid (Y2H) screens, where ZmNF-YB2a was used as a starting bait. A new NF-YC subunit, designated TaNF-YC15, was isolated in the first Y2H screen and used as bait in a second screen, which identified two wheat NF-YB subunits, TaNF-YB2 and TaNF-YB4. Three-dimensional modelling of a TaNF-YB2/TaNF-YC15 dimer revealed structural determinants that may underlie interaction selectivity. The TaNF-YB4 gene was placed under the control of the strong constitutive polyubiquitin promoter from maize and introduced into wheat by biolistic bombardment. The growth and yield components of several independent transgenic lines with up-regulated levels of TaNF-YB4 were evaluated under well-watered conditions (T1-T3 generations) and under mild drought (T2 generation). Analysis of T2 plants was performed in large deep containers in conditions close to field trials. Under optimal watering conditions, transgenic wheat plants produced significantly more spikes but other yield components did not change. This resulted in a 20-30% increased grain yield compared with untransformed control plants. Under water-limited conditions transgenic lines maintained parity in yield performance.


Assuntos
Fator de Ligação a CCAAT/genética , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Triticum/genética , Sequência de Aminoácidos , Austrália , Fator de Ligação a CCAAT/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Poliubiquitina/genética , Poliubiquitina/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Zea mays/genética
18.
BMC Plant Biol ; 14: 258, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25928569

RESUMO

BACKGROUND: New SNP marker platforms offer the opportunity to investigate the relationships between wheat cultivars from different regions and assess the mechanism and processes that have led to adaptation to particular production environments. Wheat breeding has a long history in Kazakhstan and the aim of this study was to explore the relationship between key varieties from Kazakhstan and germplasm from breeding programs for other regions. RESULTS: The study revealed 5,898 polymorphic markers amongst ten cultivars, of which 2,730 were mapped in the consensus genetic map. Mapped SNP markers were distributed almost equally across the A and B genomes, with between 279 and 484 markers assigned to each chromosome. Marker coverage was approximately 10-fold lower in the D genome. There were 863 SNP markers identified as unique to specific cultivars, and clusters of these markers (regions containing more than three closely mapped unique SNPs) showed specific patterns on the consensus genetic map for each cultivar. Significant intra-varietal genetic polymorphism was identified in three cultivars (Tzelinnaya 3C, Kazakhstanskaya rannespelaya and Kazakhstanskaya 15). Phylogenetic analysis based on inter-varietal polymorphism showed that the very old cultivar Erythrospermum 841 was the most genetically distinct from the other nine cultivars from Kazakhstan, falling in a clade together with the American cultivar Sonora and genotypes from Central and South Asia. The modern cultivar Kazakhstanskaya 19 also fell into a separate clade, together with the American cultivar Thatcher. The remaining eight cultivars shared a single sub-clade but were categorised into four clusters. CONCLUSION: The accumulated data for SNP marker polymorphisms amongst bread wheat genotypes from Kazakhstan may be used for studying genetic diversity in bread wheat, with potential application for marker-assisted selection and the preparation of a set of genotype-specific markers.


Assuntos
Polimorfismo de Nucleotídeo Único , Triticum/genética , Cromossomos de Plantas , Genoma de Planta , Cazaquistão , Especificidade da Espécie
19.
Plant Biotechnol J ; 12(3): 378-86, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24261956

RESUMO

Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H⁺-PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high-throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse-grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to null segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mM NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild-type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse- or field-grown plants. This study validates our greenhouse-based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Hordeum/enzimologia , Pirofosfatase Inorgânica/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biomassa , Grão Comestível/enzimologia , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Flores/enzimologia , Flores/genética , Flores/crescimento & desenvolvimento , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Pirofosfatase Inorgânica/metabolismo , Brotos de Planta/enzimologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Potássio/metabolismo , Salinidade , Sódio/metabolismo , Solo/química , Vacúolos/enzimologia
20.
Biomolecules ; 14(7)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39062537

RESUMO

Salinity tolerance was studied in chickpea accessions from a germplasm collection and in cultivars from Kazakhstan. After NaCl treatment, significant differences were found between genotypes, which could be arranged into three groups. Those that performed poorest were found in group 1, comprising five ICC accessions with the lowest chlorophyll content, the highest leaf necrosis (LN), Na+ accumulation, malondialdehyde (MDA) content, and a low glutathione ratio GSH/GSSG. Two cultivars, Privo-1 and Tassay, representing group 2, were moderate in these traits, while the best performance was for group 3, containing two other cultivars, Krasnokutsky-123 and Looch, which were found to have mostly green plants and an exact opposite pattern of traits. Marker-trait association (MTA) between 6K DArT markers and four traits (LN, Na+, MDA, and GSH/GSSG) revealed the presence of four possible candidate genes in the chickpea genome that may be associated with the three groups. One gene, ATP-binding cassette, CaABCC6, was selected, and three haplotypes, A, D1, and D2, were identified in plants from the three groups. Two of the most salt-tolerant cultivars from group 3 were found to have haplotype D2 with a novel identified SNP. RT-qPCR analysis confirmed that this gene was strongly expressed after NaCl treatment in the parental- and breeding-line plants of haplotype D2. Mass spectrometry of seed proteins showed a higher accumulation of glutathione reductase and S-transferase, but not peroxidase, in the D2 haplotype. In conclusion, the CaABCC6 gene was hypothesized to be associated with a better response to oxidative stress via glutathione metabolism, while other candidate genes are likely involved in the control of chlorophyll content and Na+ accumulation.


Assuntos
Cicer , Haplótipos , Estresse Oxidativo , Folhas de Planta , Tolerância ao Sal , Estresse Oxidativo/genética , Cicer/genética , Cicer/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Tolerância ao Sal/genética , Cazaquistão , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Clorofila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA