Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(16): 9021-9028, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37022719

RESUMO

The anisotropic surface functionalization of microporous zeolites with mesoporous materials into hierarchically porous heterostructures with distinctive physical and chemical properties is expected to significantly extend their applicability to catalysis. However, the precise control of the surface chemistry of zeolite crystals through site-specific interconnection with mesoporous materials remains a grand challenge. Here, we report a regioselective surface assembly strategy for the region-specific growth of mesoporous polymer/carbon on zeolite nanocrystals. The approach enables controllable regioselective surface deposition of mesoporous polydopamine on the edges, curved surfaces, or/and flat surfaces of the silicalite-1 nanocrystals into exotic hierarchical nanostructures with diverse surface geometries. Upon carbonization, their derived heterostructures with anisotropic surface wettability show amphiphilic properties. As a proof of concept, Pt nanoparticle-encapsulated silicalite-1/mesoporous carbon nanocomposites are tested to be interface-active for forming Pickering emulsions. Significantly, the catalysts show superior catalytic performance in shape-selective hydrogenation of various nitroarenes in a series of biphasic tandem catalytic reactions, giving ∼100% yield of corresponding amine products. The results pave a path toward rational construction of high levels of surface structural complexity in hierarchically porous heterostructures for specific physical and chemical characteristics in diverse applications.

2.
Angew Chem Int Ed Engl ; 61(18): e202200677, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35199436

RESUMO

We report an anisotropic-kinetics transformation strategy to prepare single-crystalline aluminosilicate MFI zeolites (ZSM-5) with highly open nanoarchitectures and hierarchical porosities. The methodology relies on the cooperative effect of in situ etching and recrystallization on the evolution of pure-silica MFI zeolite (silicalite-1) nanotemplates under hydrothermal conditions. The strategy enables a controllable preparation of ZSM-5 nanostructures with diverse open geometries by tuning the relative rate difference between etching and recrystallization processes. Meanwhile, it can also be extended to synthesize other heteroatom-substituted MFI zeolite nanocages. Compared with conventional ZSM-5 microcrystals, nanocrystals, and nanoboxes, the ZSM-5 nanocages with single-crystalline nature, highly open nanoarchitectures, and hierarchical porosities exhibit remarkably enhanced catalytic lifetime and low coking rate in the methanol-to-hydrocarbons (MTH) reaction.

3.
Adv Mater ; 32(44): e2004654, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32964570

RESUMO

Mesoporous materials have attracted considerable attention because of their distinctive properties, including high surface areas, large pore sizes, tunable pore structures, controllable chemical compositions, and abundant forms of composite materials. During the last decade, there has been increasing research interest in constructing advanced mesoporous nanomaterials possessing short and open channels with efficient mass diffusion capability and rich accessible active sites for electrochemical energy conversion and storage. Here, the synthesis, structures, and energy-related applications of mesoporous nanomaterials are the main focus. After a brief summary of synthetic methods of mesoporous nanostructures, the delicate design and construction of mesoporous nanomaterials are described in detail through precise tailoring of the particle sizes, pore sizes, and nanostructures. Afterward, their applications as electrode materials for lithium-ion batteries, supercapacitors, water-splitting electrolyzers, and fuel cells are discussed. Finally, the possible development directions and challenges of mesoporous nanomaterials for electrochemical energy conversion and storage are proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA