Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Express ; 31(20): 32669-32683, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859064

RESUMO

Owing to polarization-independent property of propagating phases inside isotropic dielectric layers, Fabry-Perot resonances in metal-dielectric-metal sandwich structures and one-dimensional (1-D) photonic crystals (PhCs) with isotropic dielectric defects are polarization-insensitive. Herein, we introduce an all-dielectric elliptical metamaterial (EMM) defect into a 1-D PhC to realize an anomalous polarization-sensitive Fabry-Perot resonance empowered by the polarization-sensitive property of the propagating phase inside the all-dielectric EMM layer. The wavelength difference of the Fabry-Perot resonance between transverse magnetic and transverse electric polarizations is larger than 100 nm at the incident angle of 45 degrees. Enabled by the polarization-sensitive property of the Fabry-Perot resonance, high-performance polarization selectivity can be achieved in a broad angle range. Our work offers a viable recipe, well within the reach of current fabrication technique, to explore polarization-dependent physical phenomena and devices.

2.
Opt Express ; 31(26): 43519-43520, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38178444

RESUMO

This erratum corrects some typing errors of our original paper, Opt. Express31(20), 32669 (2023)10.1364/OE.499830. The correction does not affect the results of the original paper.

3.
Appl Opt ; 62(25): 6625-6630, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706794

RESUMO

In conventional one-dimensional (1-D) photonic crystals (PCs) consisting of isotropic dielectrics, photonic bandgaps (PBGs) substantially shift toward shorter wavelengths as incident angle increases. This strong blueshift characteristic of PBGs significantly reduces the widths of near-infrared omnidirectional photonic bandgaps (OPBGs). Recently, researchers achieved a kind of special PBG called angle-insensitive PBGs in 1-D PCs containing all-dielectric elliptical metamaterials (EMMs). The emergence of angle-insensitive PBGs provides us a possibility to achieve ultra-large near-infrared OPBGs. Herein, we design two 1-D PCs containing all-dielectric EMMs with near-infrared angle-insensitive PBGs in different wavelength ranges. By cascading two 1-D PCs containing all-dielectric EMMs together, we achieve an ultra-large near-infrared OPBG with a width up to 1.004 µm (relative bandwidth of 63.9%). In addition, the width of the near-infrared OPBG demonstrates robustness against the layer thickness. Our work not only provides a feasible route to achieving ultra-large near-infrared OPBGs, but also facilitates the design of broadband omnidirectional mirrors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA