Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neurooncol ; 134(1): 29-40, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28597184

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor and is associated with an extremely poor clinical prognosis. One pathologic hallmark of GBM is excessive vascularization with abnormal blood vessels. Extensive investigation of anti-angiogenic therapy as a treatment for recurrent GBM has been performed. Bevacizumab, a monoclonal anti-vascular endothelial growth factor A (VEGF-A), suggests a progression-free survival benefit but no overall survival benefit. Developing novel anti-angiogenic therapies are urgently needed in controlling GBM growth. In this study, we demonstrate tumor expression of epithelial membrane protein-2 (EMP2) promotes angiogenesis both in vitro and in vivo using cell lines from human GBM. Mechanistically, this pro-angiogenic effect of EMP2 was partially through upregulating tumor VEGF-A levels. A potential therapeutic effect of a systemic administration of anti-EMP2 IgG1 on intracranial xenografts was observed resulting in both significant reduction of tumor load and decreased tumor vasculature. These results suggest the potential for anti-EMP2 IgG1 as a promising novel anti-angiogenic therapy for GBM. Further investigation is needed to fully understand the molecular mechanisms how EMP2 modulates GBM pathogenesis and progression and to further characterize anti-EMP2 therapy in GBM.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/patologia , Glicoproteínas de Membrana/metabolismo , Neovascularização Patológica/etiologia , Animais , Antígenos CD34/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Glioblastoma/tratamento farmacológico , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Imunoglobulina G/uso terapêutico , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Nus , Análise em Microsséries , Neovascularização Patológica/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transfecção , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Vis ; 19: 1747-59, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922492

RESUMO

PURPOSE: Neuroprotectin D1 (NPD1) attenuates laser-induced choroidal neovascularization (CNV) when administered intraperitoneally. Due to its lipophilicity and low molecular weight, NPD1 is well suited for topical delivery; thus, we investigated the efficacy of topically applied NPD1 in attenuating CNV. We also examined the effect of NPD1 on the recruitment and activation of microglia surrounding CNV lesions. METHODS: Mice were given laser-induced CNV and treated with NPD1 eye drops. CNV was evaluated by fluorescein leakage using a novel image analysis method and by isolectin B4 immunofluorescence of neovasculature. Microglia; recruitment was assessed by quantification. Using form factor, solidity, convexity, and fractal dimension, microglial activation was quantitatively assessed by two-dimensional, and for the first time, three-dimensional morphology. An ImageJ plugin, 3D Shape, was developed to enable this analysis. RESULTS: NPD1 attenuated leakage and neovascularization. The proximity of microglia to CNV lesions was significantly closer with NPD1. Consistent with the cellular ramification, microglia in NPD1-treated eyes were larger and exhibited a lower form factor and higher fractal dimension. CONCLUSIONS: Our data show that NPD1 signaling induces a ramified, non-injury-inducing microglial phenotype coincident with attenuation of CNV. Since microglia are crucial participants in neurodegenerative diseases, the discovery that microglia are potential targets of NPD1 signaling warrants further investigation.


Assuntos
Neovascularização de Coroide/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/uso terapêutico , Microglia/patologia , Administração Tópica , Animais , Forma Celular/efeitos dos fármacos , Neovascularização de Coroide/diagnóstico por imagem , Neovascularização de Coroide/patologia , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/farmacologia , Angiofluoresceinografia , Lasers , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Radiografia
3.
Exp Eye Res ; 92(2): 155-60, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21035444

RESUMO

Spectral Domain Optical Coherence Tomography (SD-OCT) applied to the mouse retina has been limited due to inherent movement artifacts and lack of resolution. Recently, SD-OCT scans from a commercially available imaging system have yielded retinal thickness values comparable to histology. However, these measurements are based on single point analysis of images. Here we report that using the Spectralis HRA + OCT Spectral Domain OCT and Fluorescein Angiography system (Heidelberg Engineering, Heidelberg, Germany), retinal thickness of linear expanses from SD-OCT data can be accurately assessed. This is possible by the development of a Spectralis-compatible ImageJ plug-in that imports 8-bit SLO and 32-bit OCT B-scan images, retaining scale and segmentation data and enabling analysis and 3D reconstruction. Moreover, mouse retinal layer thickness values obtained with this plug-in exhibit a high correlation to thickness measurements from histology of the same retinas. Thus, use of this ImageJ plug-in results in reliable quantification of long retinal expanses from in vivo SD-OCT images.


Assuntos
Células Fotorreceptoras de Vertebrados/citologia , Epitélio Pigmentado da Retina/citologia , Tomografia de Coerência Óptica , Animais , Antropometria , Biometria/métodos , Angiofluoresceinografia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
4.
Exp Eye Res ; 93(5): 636-48, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21854772

RESUMO

Retinal pathologies common to human eye diseases, including abnormal retinal pigment epithelial (RPE) cells, drusen-like accumulation, photoreceptor atrophy, and choroidal neovascularization, have been reported in the Ccl2/Cx3cr1-deficient mouse. The Ccl2 gene encodes the pro-inflammatory chemokine CCL2 (MCP-1), which is responsible for chemotactic recruitment of monocyte-derived macrophages to sites of inflammation. The Cx3cr1 gene encodes the fractalkine receptor, CX3CR1, and is required for accumulation of monocytes and microglia recruited via CCL2. Chemokine-mediated inflammation is implicated in retinal degenerative diseases such as diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, and uveoretinitis, and proper chemokine signaling from the RPE, Müller glia, and astrocytes is necessary to regulate leukocyte trafficking. Therefore, this mouse, possessing aberrant chemokine signaling coupled with retinal degenerative pathologies, presents an ideal opportunity to investigate the effect of altered signaling on retinal homeostasis and photoreceptor degeneration. Since this mouse is a recent development, more data covering the onset, location, and progression rate of pathologies is needed. In the present study we establish these parameters and show two photoreceptor cell death processes. Our observations of decreased glutamine synthetase and increased glial fibrillary acidic protein suggest that Müller cells respond very early within regions where lesions are forming. Finally, we suggest that retinal angiomatous proliferation contributes to pathological angiogenesis in this Ccl2/Cx3cr1-deficient mouse.


Assuntos
Quimiocina CCL2/fisiologia , Modelos Animais de Doenças , Células Fotorreceptoras de Vertebrados/patologia , Receptores de Quimiocinas/fisiologia , Degeneração Retiniana/patologia , Tomografia de Coerência Óptica , Animais , Western Blotting , Receptor 1 de Quimiocina CX3C , Progressão da Doença , Angiofluoresceinografia , Proteína Glial Fibrilar Ácida , Gliose/metabolismo , Gliose/patologia , Glutamato-Amônia Ligase/metabolismo , Imageamento Tridimensional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Oftalmoscopia , Degeneração Retiniana/metabolismo
5.
Mol Vis ; 16: 320-9, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20216940

RESUMO

PURPOSE: To examine the effects of neuroprotectin D1 (NPD1), a stereospecific derivative of docosahexaenoic acid, on choroidal neovascularization (CNV) in a laser-induced mouse model. Specifically, this was assessed by clinically grading laser-induced lesions, measuring leakage area, and volumetrically quantifying vascular endothelial cell proliferation. METHODS: C57Bl/6 mice were treated with vehicle control or NPD1, and choroidal neovascularization was induced by laser rupture of Bruch's membrane; treatment was administered throughout the first week of recovery. One and two weeks after CNV induction, fundus fluorescein angiography was performed. Angiograms were clinically graded to assess leakage severity, while leakage area was measured by image analysis of angiograms. Proliferation of vascular endothelial cells was evaluated volumetrically by three-dimensional laser confocal immunofluorescent microscopy of cytoskeletal, nuclear, and endothelial cell markers. RESULTS: At seven days after CNV induction, NPD1-treated mice had 60% fewer clinically relevant lesions than controls, dropping to 80% fewer by 14 days. NPD1 mice exhibited 25% smaller leakage area than controls at 7 days and 44% smaller area at 14 days. Volumetric immunofluorescence revealed 46% less vascular endothelial cell volume in 7-day NPD1-treated mice than in 7-day controls, and by 14 days NPD1 treatment was 68% lower than controls. Furthermore, comparison of 7- and 14-day volumes of NPD1-treated mice revealed a 50% reduction at 14 days. CONCLUSIONS: NPD1 significantly inhibits choroidal neovascularization. There are at least two possible mechanisms that could explain the neuroprotective action of NPD1. Ultimately, nuclear factor-kappaB could be inhibited with a reduction in cyclooxygenase-2 (COX-2) to reduce vascular endothelial growth factor (VEGF) expression, and/or activation of the resolution phase of the inflammatory response/survival pathways could be upregulated. Moreover, NPD1 continues to be effective after treatment is concluded, suggesting sustained protection and highlighting the potential applicability of this lipid mediator in preventing or ameliorating endothelial cell growth in pathoangiogenesis.


Assuntos
Neovascularização de Coroide/prevenção & controle , Ácidos Docosa-Hexaenoicos/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Neovascularização de Coroide/induzido quimicamente , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Fluoresceína/metabolismo , Angiofluoresceinografia , Fundo de Olho , Lasers , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Retina/efeitos dos fármacos , Retina/patologia
6.
J Comp Neurol ; 527(1): 133-158, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28472856

RESUMO

Amacrine cells are a heterogeneous group of interneurons that form microcircuits with bipolar, amacrine and ganglion cells to process visual information in the inner retina. This study has characterized the morphology, neurochemistry and major cell types of a VIP-ires-Cre amacrine cell population. VIP-tdTomato and -Confetti (Brainbow2.1) mouse lines were generated by crossing a VIP-ires-Cre line with either a Cre-dependent tdTomato or Brainbow2.1 reporter line. Retinal sections and whole-mounts were evaluated by quantitative, immunohistochemical, and intracellular labeling approaches. The majority of tdTomato and Confetti fluorescent cell bodies were in the inner nuclear layer (INL) and a few cell bodies were in the ganglion cell layer (GCL). Fluorescent processes ramified in strata 1, 3, 4, and 5 of the inner plexiform layer (IPL). All tdTomato fluorescent cells expressed syntaxin 1A and GABA-immunoreactivity indicating they were amacrine cells. The average VIP-tdTomato fluorescent cell density in the INL and GCL was 535 and 24 cells/mm2 , respectively. TdTomato fluorescent cells in the INL and GCL contained VIP-immunoreactivity. The VIP-ires-Cre amacrine cell types were identified in VIP-Brainbow2.1 retinas or by intracellular labeling in VIP-tdTomato retinas. VIP-1 amacrine cells are bistratified, wide-field cells that ramify in strata 1, 4, and 5, VIP-2A and 2B amacrine cells are medium-field cells that mainly ramify in strata 3 and 4, and VIP-3 displaced amacrine cells are medium-field cells that ramify in strata 4 and 5 of the IPL. VIP-ires-Cre amacrine cells form a neuropeptide-expressing cell population with multiple cell types, which are likely to have distinct roles in visual processing.


Assuntos
Células Amácrinas/citologia , Células Amácrinas/metabolismo , Animais , Camundongos , Camundongos Transgênicos , Peptídeo Intestinal Vasoativo/metabolismo , Vias Visuais/citologia , Vias Visuais/metabolismo
7.
Curr Eye Res ; 43(6): 821-827, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29641916

RESUMO

BACKGROUND: The phospholipid mediator platelet-activating factor (PAF) activates an inflammatory response that includes arachidonic acid release and prostaglandin production in the eye, increasing vascular permeability and inflammation. The purpose of this study is to investigate the action of LAU-0901, a novel PAF receptor antagonist, on experimental uveitis. METHODS: Uveitis was induced in Lewis rats by lipopolysaccharide treatment. LAU-0901 was then delivered systemically in different concentrations at plus 4 and 16 hours, or vehicle injected as controls. Additional animals were used for histological analyses of untreated, uveitis, and uveitis-plus-LAU-0901 retinas. Conventional histological and immunohistochemical methods were employed. A slit lamp and Spectral Domain-Ocular Coherence Tomography (SD-OCT) retinal imager was used for anterior segment photography and posterior pole OCT. Rats were euthanized 4 hours after the second LAU-0901 injection in this 24-hour model. Aqueous humor was collected and quantified, and also analyzed for tumor necrosis factor alpha (TNF-α). RESULTS: Uveitic eyes demonstrated hypopyon formation, leukocyte infiltration, and an increase in aqueous protein and TNF-α levels. LAU-0901 treatment resulted in a dose-dependent reduction in inflammation, reflected by reduced total protein levels (up to a 64% reduction). Moreover, hypopyon was prevented, leukocytes were absent in vitreous and aqueous humor, and TNF-α levels were reduced by 91%. CONCLUSIONS: The PAF receptor antagonist LAU-0901 decreases ocular inflammation in a rat model of anterior uveitis in a dose-dependent manner, suggesting that use of this molecule may provide a means to attenuate inflammation onset and offer a future alternative or adjunctive treatment for ocular inflammation.


Assuntos
Di-Hidropiridinas/farmacologia , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Uveíte/tratamento farmacológico , Animais , Humor Aquoso/metabolismo , Modelos Animais de Doenças , Masculino , Neuroproteção , Ratos , Ratos Endogâmicos Lew , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Uveíte/metabolismo , Uveíte/patologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-19931440

RESUMO

Retinal pigment epithelial (RPE) cells, derived from the neuroectoderm, biosynthesize the novel lipid mediator neuroprotectin D1 (NPD1) from docosahexaenoic acid (DHA) in response to oxidative stress or to neurotrophins, and in turn, elicits cytoprotection. Here, we report the identification of a 16,17-epoxide-containing intermediate in the biosynthesis of NPD1 in ARPE-19 cells from 17S-hydro-(peroxy)-docosahexaenoic acid. We prepared and isolated tritium-labeled NPD1 ([(3)H]-NPD1) and demonstrate specific and high-affinity stereoselective binding to ARPE-19 cells (K(d)=31.3+/-13.1 pmol/mg of cell protein). The stereospecific NPD1 interactions with these cells in turn gave potent protection against oxidative stress-induced apoptosis, and other structurally related compounds were weak competitors of NPD1 specific binding. This [(3)H]-NPD1/PD1 also displayed specific and selective high affinity binding with isolated human neutrophils (K(d) approximately 25 nM). Neither resolvin E1 nor lipoxin A(4) competed for [(3)H]-NPD1/PD1 specific binding with human neutrophils. Together, these results provide evidence for stereoselective specific binding of NPD1/PD1 with retinal pigment epithelial cells as well as human neutrophils. Moreover, they suggest specific receptors for this novel mediator in both the immune and visual systems.


Assuntos
Antioxidantes/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Fármacos Neuroprotetores/metabolismo , Neutrófilos/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/síntese química , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Ligação Competitiva , Linhagem Celular , Ácidos Docosa-Hexaenoicos/síntese química , Ácidos Docosa-Hexaenoicos/química , Ácidos Docosa-Hexaenoicos/farmacologia , Relação Dose-Resposta a Droga , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacologia , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Isomerismo , Cinética , Lipoxinas/metabolismo , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/farmacologia , Neutrófilos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Fator de Necrose Tumoral alfa/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA