Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Hematol Oncol Stem Cell Res ; 15(3): 178-191, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082999

RESUMO

Background: Fresh stem cell exosomes are usually obtained and reused in the same individual. It cannot be kept viable for a long period of time regardless of the lengthy preparation time. Freezing is typically used to preserve the viability of perishable materials and increase their lifetime. Regrettably, normal freezing of biomaterials leads to cell damage. Therefore, a cryoprotectant can save the cells from the conventional cryodamage. Sodium carboxymethylcellulose (NA-CMC) is a powdery substance that is used to manufacture bio-safe hydrofilm gels because of its high viscosity, cytocompatibility, and nonallergenic nature. Materials and Methods: Sterile CMC hydrogel was prepared, part of which was loaded with exosomal solution derived from MSCs. The gel was kept at -20°C for preservation. Two bilateral full-thickness circular skin wounds of 2-cm diameter were created on the back of experimental dogs. The wounds were at least 2.5 cm apart. Treatment started 24 hours after wound creation. Group I received CMC gel solely, whereas group II received frozen CMC exosomal gel. The gel was applied 4 times, a single application per day with 1- day interval. Results: Clinically, the frozen exosomal gel significantly promoted wound healing with no scaring. Histologically, enhanced dermal fibroblasts and organized collagen deposition were seen in the treated group. Conclusion: CMC proved to be an efficient cryoprotectant and a suitable vehicle for exosomes. Deep freezing was proven to conserve the viability, extended the preservation, and facilitated the usage of exosomal gel. This technique of preserved cell-free therapy is inexpensive, time-saving, and proficient and seems suitable for treating cutaneous wounds.

2.
Int J Stem Cells ; 10(2): 144-153, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084422

RESUMO

BACKGROUND AND OBJECTIVES: The present study investigated whether MSCs derived microvesicles (MVs) or (Exosomes) can exert therapeutic effects on an experimental model of cutaneous injury and explored the underlying involving mechanisms. METHODS AND RESULTS: Three bilateral full thickness circular wounds were created on the back of two groups of dogs using 2-cm dermal punch. The wounds were at least 2.5 cm apart. Saline was subcutaneously injected in 4 places around each wound area in group-I (control), whereas an equal volume of exosomal solution of MSCs derived MVs was similarly injected in group-II. The findings demonstrated that MSCs derived MVs had significantly promoted cutaneous wound healing, collagen synthesis, and vascularization at wound sites. The application of the exosomal solution had not only promoted the generation of newly formed vessels, but also have accelerated their development and maturation leading to a faster healing process. CONCLUSIONS: MSC-Exosomes appeared to be a superior candidate for treating cutaneous wounds than their originator cells, and may represent a promising opportunity to develop a novel cell-free therapy approach that might overcome the obstacles and risks associated with the use of native or engineered stem cells transplantation therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA