Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Langmuir ; 40(28): 14486-14503, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38970496

RESUMO

Electrochemical sensing is emerging as a method of choice for the sensing and monitoring of contaminants in water. Various sensing platforms have been designed for sensing heavy metal ions and organic pollutants in water bodies. Herein, we report a new electrochemical platform that can be used for the detection of both heavy metal ions and nitro-based organic contaminants in water bodies. The electrochemical sensor uses a modified electrode based on Fe3S4-impregnated zirconium phosphate (ZrP) nanoparticles synthesized by a simple ultrasonication method. The ZrP@Fe3S4 nanoparticles were thoroughly characterized by power X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), and ζ-potential studies. The material exhibits an excellent electrochemical performance for the detection of Pb2+, Hg2+, nitrophenol, nitroaniline, and picric acid with low limits of detection of ca. 0.93, 0.70, 0.98, 1.10, and 1.53 ppm, respectively. Since ZrP@Fe3S4 nanoparticles are magnetically recyclable, their adsorption capacity and recyclability have been thoroughly investigated for the uptake of Pb2+ and Hg2+ ions from contaminated water. We observed that the adsorption of Pb2+ and Hg2+ ions on ZrP@Fe3S4 is best described by the Langmuir isotherm and pseudo-second-order kinetic models, with adsorption capacities of 219.44 and 118.4 mg/g, respectively. Similarly, the removal efficiency of ZrP@Fe3S4 was found to be 91, 57.6, and 31.3% for nitrophenol, nitroaniline, and picric acid, respectively. Furthermore, the theoretical calculations using density functional theory (DFT) were carried out to find the adsorption energy, affinity, and point of adsorption, which are in line with the experimental results. DFT calculations further suggest that the incorporation of Fe3S4 on ZrP improves the surface charge density and promotes efficient electron transfer between the electrode and the analyte. We have shown the real-time analysis of Dal lake water as a proof of concept, and the synthesized composite exhibits good recovery and promising results for metal ion sensing. ZrP@Fe3S4 demonstrated an excellent cycling stability and long-term stability without noticeable degradation for 1 week.

2.
Biotechnol Bioeng ; 120(1): 22-40, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36169115

RESUMO

All the disciplines of science, especially biotechnology, have given continuous attention to the area of enzyme immobilization. However, the structural support made by material science intervention determines the performance of immobilized enzymes. Studies have proven that nanostructured supports can maintain better catalytic performance and improve immobilization efficiency. The recent trends in the application of nanofibers using natural polymers for enzyme immobilization have been addressed in this review article. A comprehensive survey about the immobilization strategies and their characteristics are highlighted. The natural polymers, e.g., chitin, chitosan, silk fibroin, gelatin, cellulose, and their blends with other synthetic polymers capable of immobilizing enzymes in their 1D nanofibrous form, are discussed. The multiple applications of enzymes immobilized on nanofibers in biocatalysis, biosensors, biofuels, antifouling, regenerative medicine, biomolecule degradation, etc.; some of these are discussed in this review article.


Assuntos
Técnicas Biossensoriais , Nanofibras , Enzimas Imobilizadas/metabolismo , Nanofibras/química , Polímeros/química , Biocatálise
3.
Biotechnol Bioeng ; 119(1): 9-33, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34672360

RESUMO

The arrangement and type of support has a significant impact on the efficiency of immobilized enzymes. 1-dimensional fibrous materials can be one of the most desirable supports for enzyme immobilization. This is due to their high surface area to volume ratio, internal porosity, ease of handling, and high mechanical stability, all of which allow a higher enzyme loading, release and finally lead to better catalytic efficiency. Fortunately, the enzymes can reside inside individual nanofibers to remain encapsulated and retain their three-dimensional structure. These properties can protect the enzyme's tolerance against harsh conditions such as pH variations and high temperature, and this can probably enhance the enzyme's stability. This review article will discuss the immobilization of enzymes on synthetic polymers, which are fabricated into nanofibers by electrospinning. This technique is rapidly gaining popularity as one of the most practical ways to fibricate polymer, metal oxide, and composite micro or nanofibers. As a result, there is interest in using nanofibers to immobilize enzymes. Furthermore, present research on electrospun nanofibers for enzyme immobilization is primarily limited to the lab scale and industrial scale is still challanging. The primary future research objectives of this paper is to investigate the use of electrospun nanofibers for enzyme immobilization, which includes increasing yield to transfer biological products into commercial applications.


Assuntos
Biocatálise , Técnicas Eletroquímicas/métodos , Enzimas Imobilizadas , Nanofibras/química , Polímeros , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Polímeros/química , Polímeros/metabolismo
4.
AAPS PharmSciTech ; 23(5): 160, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676602

RESUMO

Prolonged retention of losartan potassium in the upper gastrointestinal tract is anticipated to increase its absorption and exposure to CYP450 enzyme subfamilies, undertaking its conversion to more potent (10-40 times) active metabolite, losartan carboxylic acid (LCA). Consistent with this, hydroxypropyl methylcellulose K4M/ethyl cellulose-based novel expandable films (EFs) containing losartan potassium (LP) suitable for prolonged retention in the stomach were developed. The films were prepared by solvent casting method. USP type II dissolution apparatus (0.1 N HCl, 37°C, 100 rpm) was used to perform the dissolution testing (drug release, unfolding behavior, film integrity, erosion, and water uptake) of the films. In vivo pharmacokinetic studies were carried out in rabbits. An HPLC-UV method was used for the quantification of the drug and its active metabolite in plasma. These folded films placed inside hard gelatin capsule shells unfolded to full dimensions in dissolution medium and provided sustained drug release throughout 12 h. The plasma drug concentration-time curves obtained from the in vivo studies were used to determine pharmacokinetic parameters, such as area under the plasma drug concentration-time curve (AUC), area under first moment curve (AUMC), mean residence time (MRT), Cmax, Tmax, t1/2, ke, and Fr in comparison with that of the market formulation, Cozaar®. The novel EFs significantly changed the pharmacokinetic parameters of the drug and its active metabolite. The apparent elimination rate constant (ke) significantly decreased, while MRT and elimination half-life (t1/2) increased in both cases. The relative bioavailabilities (Fr) of both LP and E3174 using the novel formulation were higher than that of Cozaar®.


Assuntos
Celulose , Losartan , Animais , Disponibilidade Biológica , Celulose/análogos & derivados , Preparações de Ação Retardada/farmacocinética , Losartan/farmacocinética , Coelhos
5.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924640

RESUMO

Essential oils prevent superbug formation, which is mainly caused by the continuous use of synthetic drugs. This is a significant threat to health, the environment, and food safety. Plant extracts in the form of essential oils are good enough to destroy pests and fight bacterial infections in animals and humans. In this review article, different essential oils containing polymeric nanofibers fabricated by electrospinning are reviewed. These nanofibers containing essential oils have shown applications in biomedical applications and as food-packaging materials. This approach of delivering essential oils in nanoformulations has attracted considerable attention in the scientific community due to its low price, a considerable ratio of surface area to volume, versatility, and high yield. It is observed that the resulting nanofibers possess antimicrobial, anti-inflammatory, and antioxidant properties. Therefore, they can reduce the use of toxic synthetic drugs that are utilized in the cosmetics, medicine, and food industries. These nanofibers increase barrier properties against light, oxygen, and heat, thereby protecting and preserving the food from oxidative damage. Moreover, the nanofibers discussed are introduced with naturally derived chemical compounds in a controlled manner, which simultaneously prevents their degradation. The nanofibers loaded with different essential oils demonstrate an ability to increase the shelf-life of various food products while using them as active packaging materials.


Assuntos
Embalagem de Alimentos , Nanofibras/química , Óleos Voláteis/química , Polímeros/química , Animais , Composição de Medicamentos , Humanos , Nanofibras/ultraestrutura , Alicerces Teciduais/química
6.
Macromol Rapid Commun ; 41(21): e2000195, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32529701

RESUMO

The present paper describes the addition of nitroxide-functionalized graphene oxide (GOFT) into polyamide 6 (PA6) micro- and nanofibers, which are obtained through electrospinning. Scanning electron microscopy micrographs demonstrate the presence of fibers. Tensile testing presents an unexpected and non-obvious behavior, in which the Young's modulus, tensile strength, and elongation simultaneously and remarkably increase compared to the pristine polymer nanofibers. GOFT induces the hydrogen bonding between the NH group from PA6 with the functional groups, thus promoting higher crystallinity of the polymer matrix. Nonetheless, deconvoluted curves by differential scanning calorimetry reveal the presence of two quasi-steady polymorphs (ß and Î´ phases) contributing to 46% of the total crystallinity. This evidence suggests that their presence and high ratios are responsible for the unexpected and simultaneous enhancement of tensile properties.


Assuntos
Nanofibras , Nylons , Caprolactama/análogos & derivados , Grafite , Polímeros
7.
Adv Exp Med Biol ; 1078: 49-78, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357618

RESUMO

Naturally bone is a hierarchical and highly integrative dynamic tissue that is continuously remodeled by osteoblasts and osteoclasts. Deformities in bone due to trauma and/or disease are highly prevalent and mostly need surgical intervention. However, the methods of surgical treatments are associated with donor site morbidity, infection and/or complete rejection. Bone tissue-engineering provides a platform for growth of new bone tissue by fabricating scaffolds along with cells, growth factors and other dynamic forces. The polymeric materials especially natural polymers in their nanofibrous forms have been developed and introduced for bone tissue regeneration. At the nanoscale, natural polymers possess tunable properties and can be surface functionalized or blended with other polymers to provide juncture for cell-seeding, proliferation, differentiation and further resulting in regenerated tissue formation. These scaffolds fabricated from natural polymers and additives by electrospinning are bio-inspired to mimic the natural extracellular matrix resembling the native collagen of bone. This chapter focuses on the fabrication techniques as state of art nanofibrous scaffolds from natural polymers/additives during the recent years by the process of electrospinning for use in bone tissue regeneration. Further on, this chapter highlights the development in the scaffold fabrication from natural polymers like silk fibroin, chitosan, collagen, gelatin, cellulose, starch and, zein. The importance of add-on materials like stem cells, hydroxyapatite, apatite-wollanstonite, growth factors, osteogenic cells, bone morphogenic proteins and osteogenic drugs have been discussed and illustrated by various examples for enhancing the formation of new bone tissue. Furthermore, this chapter explains how these natural polymers influence the several signaling pathways to regulate bone regeneration.


Assuntos
Regeneração Óssea , Nanofibras , Engenharia Tecidual , Alicerces Teciduais , Proliferação de Células , Humanos , Polímeros , Transdução de Sinais
8.
Adv Exp Med Biol ; 1077: 501-525, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357706

RESUMO

Tissue-engineering is emerging field and can be considered as a novel therapeutic intervention in nerve tissue-regeneration. The various pitfalls associated with the use of autografts in nerve-regeneration after injuries have inspired researchers to explore the possibilities using various natural polymers. In this context, the present chapter summarizes the advances of the various types of natural polymeric scaffolds such as fibrous scaffolds, porous scaffolds, and hydrogels in nerve-regeneration and repair process. The functionalization of the scaffolds with wide-range of biomolecules and their biocompatibility analysis by employing various cells (e.g., mesenchymal, neural progenitor stem cells) along with the in vivo regeneration outcomes achieved upon implantation are discussed here. Besides, the various avenues that have been explored so far in nerve tissue-engineering, the use of the extracellular matrix in enhancing the functional polymeric scaffolds and their corresponding outcomes of regeneration are mentioned. We conclude with the present challenges and prospects of efficient exploration of natural polymeric scaffolds in the future to overcome the problems of nerve-regeneration associated with various nerve injuries and neurodegenerative disorders.


Assuntos
Regeneração Nervosa , Tecido Nervoso , Engenharia Tecidual , Alicerces Teciduais , Humanos , Polímeros
9.
Nanomedicine ; 11(3): 681-91, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25555351

RESUMO

Tissue-engineered skin substitutes such as nanofibers from traditional electrospinning may offer an effective therapeutic option for the treatment of patients suffering from skin damages such as burns and diabetic ulcers. However, it is generally difficult for cells to infiltrate the nanofibers due to their small pore size and sheets-like appearance. In the present study, a facile and efficient strategy has successfully been introduced that can produce 3D silk fibroin nanofibers, obviating an intrinsic limitation of traditional and salt-leaching electrospinning by introducing cold-plate electrospinning. The cell attachment and infiltration studies indicated the use of 3D nanofiber scaffolds by cold-plate electrospinning as a potential candidate to overcome intrinsic barriers of electrospinning techniques. The 3D nanofiber scaffolds using this technique presented a high porosity with controlled thickness and an easy contouring of facial shape; these properties can contribute to the ideal candidate for artificial skin reconstruction. From the clinical editor: Electrospun nanofibers are considered as promising scaffolds for tissue engineering due to extracellular matrix mimicking factor resulting in a controllable 3D nanofibrous form. The cold-plate electrospinning technique can facilitate the fabrication of these biomaterials to create structures that could resemble the dermis.


Assuntos
Fibroínas/química , Nanofibras/química , Pele Artificial
10.
Appl Surf Sci ; 321: 205-213, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25435600

RESUMO

The present study discusses the design, development and characterization of electrospun Tecoflex® EG 80A class of polyurethane nanofibers and the incorporation of multiwalled carbon nanotubes (MWCNTs) to these materials. Scanning electron microscopy results confirmed the presence of polymer nanofibers, which showed a decrease in fiber diameter at 0.5% wt. and 1% wt. MWCNTs loadings, while transmission electron microscopy showed evidence of the MWCNTs embedded within the polymer matrix. The fourier transform infrared spectroscopy and Raman spectroscopy were used to elucidate the polymer-MWCNTs intermolecular interactions, indicating that the C-N and N-H bonds in polyurethanes are responsible for the interactions with MWCNTs. Furthermore, tensile testing indicated an increase in the Young's modulus of the nanofibers as the MWCNTs concentration was increased. Finally, NIH 3T3 fibroblasts were seeded on the obtained nanofibers, demonstrating cell biocompatibility and proliferation. Therefore, the results indicate the successful formation of polyurethane nanofibers with enhanced mechanical properties, and demonstrate their biocompatibility, suggesting their potential application in biomedical areas.

11.
Int J Biol Macromol ; 256(Pt 1): 128272, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000568

RESUMO

Nanozymes, a new class of nanomaterials-based artificial enzymes, have gained huge attraction due to their high operational stability, working efficiency in extreme conditions, and resistance towards protease digestion. Nowadays, they are effectively substituted for natural enzymes for catalysis by closely resembling the active sites found in natural enzymes. Nanozymes can compensate for natural enzymes' drawbacks, such as high cost, poor stability, low yield, and storage challenges. Due to their transforming nature, nanozymes are of utmost importance in the detection and treatment of cancer. They enable precise cancer detection, tailored drug delivery, and catalytic therapy. Through enhanced diagnosis, personalized therapies, and reduced side effects, their adaptability and biocompatibility can transform the management of cancer. The review focuses on metal and metal oxide-based nanozymes, highlighting their catalytic processes, and their applications in the prevention and treatment of cancer. It emphasizes their potential to alter diagnosis and therapy, particularly when it comes to controlling reactive oxygen species (ROS). The article reveals the game-changing importance of nanozymes in the future of cancer care and describes future research objectives, making it a useful resource for researchers, and scientists. Lastly, outlooks for future perspective areas in this rapidly emerging field have been provided in detail.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Endopeptidases , Peptídeo Hidrolases , Catálise
12.
Tissue Eng Regen Med ; 21(5): 711-721, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38520636

RESUMO

BACKGROUND: In this study an approach was made to efficaciously synthesize gold enhanced titania nanorods by electrospinning. This study aims to address effects of gold enhanced titania nanorods on muscle precursor cells. Additionally, implant related microbial infections are prime cause of various disastrous diseases. So, there is predictable demand for synthesis of novel materials with multifunctional adaptability. METHODS: Herein, gold nanoparticles were attached on titania nanorods and described using many sophisticated procedures such as XRD, SEM, EDX and TEM. Antimicrobial studies were probed against Gram-negative Escherichia coli. C2C12 cell lines were exposed to various doses of as-prepared gold enhanced titania nanorods in order to test in vitro cytotoxicity and proliferation. Cell sustainability was assessed through Cell Counting Kit-8 assay at regular intervals. A phase-contrast microscope was used to examine morphology of exposed C2C12 cells and confocal laser scanning microscope was used to quantify cell viability. RESULTS: The findings indicate that titania nanorods enhanced with gold exhibit superior antimicrobial efficacy compared to pure titania. Furthermore, newly synthesized gold-enhanced titania nanorods illustrate that cell viability follows a time and concentration dependent pattern. CONCLUSION: Consequently, our study provides optimistic findings indicating that titania nanorods adorned with gold hold significant potential as foundational resource for developing forthcoming antimicrobial materials, suitable for applications both in medical and biomedical fields. This work also demonstrates that in addition to being extremely biocompatible, titania nanorods with gold embellishments may be used in a range of tissue engineering applications in very near future.


Assuntos
Proliferação de Células , Escherichia coli , Ouro , Nanotubos , Titânio , Ouro/química , Ouro/farmacologia , Titânio/farmacologia , Titânio/química , Animais , Proliferação de Células/efeitos dos fármacos , Camundongos , Escherichia coli/efeitos dos fármacos , Nanotubos/química , Linhagem Celular , Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Sobrevivência Celular/efeitos dos fármacos
13.
Biomater Adv ; 158: 213773, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38277903

RESUMO

Despite being an approved antiemetic for more than five decades, the clinical usefulness of prochlorperazine is limited by its low solubility and inconsistent absorption in the gastrointestinal tract, which presents challenges for nanotherapeutic interventions. Here, we report the preparation of a highly soluble and permeable nanofiber formulation of prochlorperazine using the Quality-by-Design approach. The final nanofiber formulation with drug entrapment of 88.02 ± 1.14 % was obtained at 20.0 kV, with a flow rate of 0.5 ml/h and tip-to-collector distance of 19.9 cm. Physio-mechanical properties, such as thickness (0.42 ± 0.02 mm), pH resistance (7.04 ± 0.08), folding endurance (54 ± 5), and tensile strength (0.244 ± 0.02 N.mm-2), were appropriate for packaging and application to oromucosal surfaces. The content uniformity (93.48-106.63 %) and weight variation (<1.8 mg) of the optimal nanofiber formulation were within the permissible limits prescribed for orodispersible films. Microscopical investigations confirm a randomly deposited and dense network of woven nanofibers with an average diameter of 363 ± 5.66 nm. The drug particles were embedded homogeneously on the fiber in the nanoform (4.27 ± 1.34 nm). The spectral analysis using TEM-EDS shows diffraction peaks of sulfur and chlorine, the elemental constituents of prochlorperazine. The drug was amorphized in the nanofiber formulation, as led by the decline of the crystallinity index from 87.25 % to 7.93 % due to electrostatic destabilization and flash evaporation of the solvent. The enthalpy of fusion values of the drug in the nanofiber mat decreased significantly to 23.6 J/g compared to its pristine form, which exhibits a value of 260.7 J/g. The nanofibers were biocompatible with oral mucosal cells, and there were no signs of mucosal irritation compared to 1 % sodium lauryl sulfate. The fiber mats rapidly disintegrated within <1 s and released ≈91.49 ± 2.1 % of the drug within 2 min, almost 2-fold compared to the commercial Stemetil MD® tablets. Similarly, the cumulative amount of the drug permeated across the unit area of the oromucosal membrane was remarkably high (31.28 ± 1.30 µg) compared to 10.17 ± 1.11 µg and 13.10 ± 1.79 µg from the cast film and drug suspension. Our results revealed these nanofiber formulations have the potential to be fast-dissolving oromucosal delivery systems, which can result in enhanced bioavailability with an early onset of action due to rapid disintegration, dissolution, and permeation.


Assuntos
Nanofibras , Proclorperazina , Solubilidade
14.
Appl Microbiol Biotechnol ; 97(4): 1725-34, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22918299

RESUMO

Zinc oxide (ZnO) nanostructures have been commonly studied for electronic purposes due to their unique piezoelectric and catalytic properties; however, recently, they have been also exploited for biomedical applications. The purpose of this study was to fabricate ZnO-doped poly(urethane) (PU) nanocomposite via one-step electrospinning technique. The utilized nanocomposite was prepared by using colloidal gel composed of ZnO and PU, and the obtained mats were vacuum dried at 60 °C overnight. The physicochemical characterization of as-spun composite nanofibers was carried out by X-ray diffraction pattern, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, electron probe microanalysis, and transmission electron microscopy, whereas the thermal behavior was analyzed by thermogravimetric analysis. The viability, attachment, and proliferation of NIH 3T3 mouse fibroblast cells on the ZnO/PU composite nanofibers were analyzed by in vitro cell compatibility test. The morphological features of the cells attached on nanofibers were examined by Bio-SEM. We conclude that the electrospun nanofibrous scaffolds with unique spider nets had good biocompatibility. Cytotoxicity experiments indicated that the mouse fibroblasts could attach to the nanocomposite after being cultured. Thus, the current work demonstrates that the as-synthesized ZnO/PU hybrid nanofibers represent a promising biomaterial to be exploited for various tissue engineering applications.


Assuntos
Materiais Biocompatíveis/química , Nanofibras/química , Poliuretanos/química , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Óxido de Zinco/química , Animais , Sobrevivência Celular , Técnicas Eletroquímicas , Camundongos , Microscopia Eletrônica , Células NIH 3T3 , Difração de Raios X
15.
Nanoscale Adv ; 5(3): 742-755, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36756521

RESUMO

Glyphosate [N-(phosphonomethyl)glycine] is a widely used phosphonate herbicide for different agricultural purposes. Due to its widespread use, suspected toxicity, and ubiquitous bioaccumulation, it is one of the most harmful contaminants found in drinking water. This demands efficient sensing and removal of glyphosate from contaminated water. Here, we report the decoration of novel and highly porous biochar with nanozero-valent iron (nZVI) nanoparticles to develop an efficient electrochemical sensor for the trace detection of glyphosate. The as-synthesized composite was thoroughly characterized by various state-of-the-art instrumental techniques. The electron micrographs of the composite materials revealed the cavity-like structure and the abundant loading of nZVI nanoparticles. FTIR and XPS analyses confirmed the presence of oxygen-rich functionalities and Fe(0) in the composite nanostructure. Electrochemical analysis through CV, LSV, and DPV techniques suggested efficient sensing activity with a limit of detection as low as 0.13 ppm. Furthermore, the chronopotentiometric response suggested excellent and superior stability for long-term applications. To gain more insight into the interaction between glyphosate and the composite material, DFT calculations were carried out. The Frontier Molecular Orbital study (FMO), Molecular Electrostatic Potentials (MEPs), and Density of States (DOS) suggest an increase in the electron density, an increase in the DOS, and a decrease in the HOMO-LUMO band gap by combining nZVI nanoparticles and biochar. The results suggest more facile electron transfer from the composite for trace detection of glyphosate. As a proof of concept, we have demonstrated that real-time analysis of milk, apple juice, and the as-synthesized composite shows promising results for glyphosate detection with an excellent recovery rate.

16.
Nanomaterials (Basel) ; 13(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36985895

RESUMO

Bacterial infections remain a serious and pervasive threat to human health. Bacterial antibiotic resistance, in particular, lowers treatment efficacy and increases mortality. The development of nanomaterials has made it possible to address issues in the biomedical, energy storage, and environmental fields. This paper reports the successful synthesis of CeO2-SnO2 composite nanofibers via an electrospinning method using polyacrylonitrile polymer. Scanning and transmission electron microscopy assessments showed that the average diameter of CeO2-SnO2 nanofibers was 170 nm. The result of photocatalytic degradation for methylene blue dye displayed enhanced efficiency of the CeO2-SnO2 composite. The addition of SnO2 to CeO2 resulted in the enhancement of the light absorption property and enriched charge transmission of photoinduced electron-hole duos, which conspicuously contributed to momentous photoactivity augmentation. Composite nanofibers exhibited higher specific capacitance which may be accredited to the synergism between CeO2 and SnO2 particles in nanofibers. Furthermore, antibacterial activity was screened against Escherichia coli and CeO2-SnO2 composite nanofibers depicted excellent activity. The findings of this work point to new possibilities as an electrode material in energy storage systems and as a visible-light-active photocatalyst for the purification of chemical and biological contaminants, which would substantially benefit environmental remediation processes.

17.
Int J Biol Macromol ; 226: 690-705, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36513179

RESUMO

In this study, polyurethane (PU) and cellulose acetate (CA) electrospun fibers encapsulating rosemary essential oil (REO) and adsorbed silver (Ag) nanoparticles (NPs) were fabricated. The biologically inspired materials were analyzed for physicochemical characteristics using scanning electron microscopy, X-ray diffractometer, Fourier transform infrared, thermal gravimetric analysis, X-ray photoelectron spectroscopy, water contact angle, and water uptake studies. Results confirmed the presence of CA and Ag NPs on the PU micro-nanofibers increased the hydrophilicity from 107.1 ± 0.36o to 26.35 ± 1.06o. The water absorption potential increased from 0.07 ± 0.04 for pristine PU fibers to 12.43 ± 0.49 % for fibers with 7 wt% of CA, REO, and Ag NPs. The diffractometer confirmed the 2θ of 38.01°, 44.13o, and 64.33o, corresponding to the diffraction planes of Ag on the fibers. The X-ray photoelectron spectroscopy confirmed microfibers interfacial chemical interaction and surface changes due to CA, REO, and Ag presence. The inhibition tests on Staphylococcus aureus and Escherichia coli indicated that composites are antibacterial in activity. Moreover, synergistic interactions of REO and Ag NPs resulted in superior antibacterial activity. The cell viability and attachment assay showed improved hydrophilicity of the fibers, which resulted in better attachment of cells to the micro-nanofibers, similar to the natural extracellular matrix in the human body.


Assuntos
Nanopartículas Metálicas , Nanofibras , Óleos Voláteis , Rosmarinus , Humanos , Poliuretanos , Prata/química , Nanopartículas Metálicas/química , Nanofibras/química , Antibacterianos/farmacologia , Antibacterianos/química , Óleos Voláteis/farmacologia , Cicatrização
18.
J Control Release ; 339: 143-155, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34563589

RESUMO

Bone development is a complex process involving a vast number of growth factors and chemical substances. These factors include transforming growth factor-beta, platelet-derived growth factor, insulin-like growth factor, and most importantly, the bone morphogenetic protein, which exhibits excellent therapeutic value in bone repair. However, the spatial-temporal relationship in the expression of these factors during bone formation makes the bone repair a more complicated process to address. Thus, using a single therapeutic agent to address bone formation does not seem to provide a clinically effective option. Conversely, a dual delivery approach facilitating the co-delivery of agents has proved to be a dynamic alternative since such a strategy can provide more efficient spatial-temporal action. Such delivery systems can smartly target more than one pathway or differentiation lineage and thus offer more efficient bone regeneration. This review discusses various dual delivery strategies reported in the literature employed to achieve improved bone regeneration. These include concurrent use of different therapeutic agents (including growth factors and drugs), enhancing bone formation and cell recruitment, and improving the efficiency of bone healing.


Assuntos
Materiais Biocompatíveis , Proteína Morfogenética Óssea 2 , Regeneração Óssea , Osso e Ossos , Osteogênese
19.
Mater Sci Eng C Mater Biol Appl ; 118: 111547, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33255098

RESUMO

Cellulose nanofibers, which are troublesome to spin into fibers, can be easily fabricated by post-regeneration of its acetate-derived threads. Cellulose is a natural polymer; it enjoys better biocompatibility, cellular mimicking, and hydrophilic properties than its proportionate analog. Herein, we regenerated acetate-free nanofibers by alkaline de-acetylation of as-spun nanofibers. The resultant cellulose nanofibers previously loaded with hydroxyapatite (HAp) were immobilized using silver (Ag) nanoparticles (NPs) by reduction of adsorbed Ag ions on using sodium borohydride. These amalgamated nanofibers were characterized for SEM, EDX, TEM, FTIR, and hydrophilicity tests revealing the existence of both HAp and Ag NPs in/on the nanofiber scaffolds. The de-acetylation of composite nanofibers resulted in spontaneous hydrophilicity. These nanofibers were cytocompatible, as resolved by MTT assay conducted on chicken embryo fibroblasts. The SEM of the samples after cell culture revealed that these composites allowed a proliferation of the fibroblasts over and within the nanofiber network, and increased concentration of HAp levitated the excessive of apatite formation as well as increased cell growth. The antimicrobial activity of these nanofibers was assessed on E. coli (BL21) and S. aureus, suggesting the potential of de-acetylated nanofibers to restrain bacterial growth. The degradation study for 10, 30, and 60 days indicated degradation of the fibers much is faster in enzymes as compared to degradation in PBS. The results certify that these nanofibers possess enormous potential for soft and hard tissue engineering besides their antimicrobial properties.


Assuntos
Nanofibras , Nanopartículas , Animais , Celulose/análogos & derivados , Embrião de Galinha , Durapatita , Escherichia coli , Prata/farmacologia , Staphylococcus aureus , Engenharia Tecidual
20.
Curr Pharm Biotechnol ; 22(6): 793-807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33176640

RESUMO

Carbon nanotubes are nano-sized cylindrical chicken wire-like structures made of carbon atoms. Carbon nanotubes have applications in electronics, energy storage, electromagnetic devices, environmental remediation and medicine as well. The biomedical applications of carbon nanotubes can be owed to features like low toxicity, non-immunogenicity, high in vivo stability and rapid cell entry. Carbon nanotubes have a great prospect in the treatment of diseases through diagnostic as well as therapeutic approaches. These nanostructures are interesting carriers for delivery and translocation of therapeutic molecules e.g. proteins, peptides, nucleic acids, drugs, etc. to various organs like the brain, lungs, liver, and pancreas. Commonly used methods to synthesize carbon nanotubes are arc discharge, chemical vapor deposition, pyrolysis, laser ablation etc. These methods have many disadvantages such as operation at high temperature, use of chemical catalysts, prolonged synthesis time and inclusion of toxic metallic particles in the final product requiring additional purification processes. In order to avoid these setbacks, various green chemistry-based synthetic methods have been devised, e.g., those involving interfacial polymerization, supercritical carbon dioxide drying, plant extract assisted synthesis, water- assisted synthesis, etc. This review will provide a thorough outlook of the eco-friendly synthesis of carbon nanotubes reported in the literature and their biomedical applications. Besides, the most commonly used spectroscopic techniques used for the characterization of carbon nanotubes are also discussed.


Assuntos
Portadores de Fármacos/química , Nanotubos de Carbono/química , Extratos Vegetais/química , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA