RESUMO
In brief: Since available therapeutic approaches for chemotherapy-induced non-obstructive azoospermia (NOA) patients are not enough efficient, an urgent need for treatment alternatives is felt. This study shows that adipose tissue-derived mesenchymal stem cells-derived exosome (AD-Exo) treatment is more effective in ameliorating busulfan-induced NOA rat models compared to platelet-rich plasma (PRP). Abstract: Patients with non-obstructive azoospermia (NOA) are unable to have their children. Therefore, there is an urgent need for additional treatment alternatives for these patients. Recently, novel treatments based on the exosomes derived from mesenchymal stem cells (MSCs) as the agents responsible for exerting the paracrine effects and consequently biological functions of MSCs are proposed. Besides, platelet-rich plasma (PRP) as a significant blood byproduct has been therapeutically applied in several male infertility studies. In this study, we compared the effects of PRP and exosome treatment on spermatogenesis restoration in NOA rat models. Exosomes and PRP were isolated from the adipose tissue-derived MSCs (AD-MSCs) collected from conditioned medium and peripheral blood of human volunteers, respectively. Non-obstructive azoospermia (NOA) induction was done through two doses of busulfan at a 21-day interval. Thirty-five days after NOA induction, intratesticular injection of AD-MSCs-derived exosome (AD-Exo), PRP, and PBS was performed. The control group did not receive any treatment. Two months later, the rats were euthanized for further analysis. Our results revealed that both AD-Exo and PRP treatments improved the size and weight of testis, modulated the expression level of Dazl, Ddx4, Stra8, Pwil1, and Ccna1, and ameliorated the serum level of LDH, SOD, and GR enzymes in NOA rats. Moreover, the AD-Exo group showed improved testosterone, GPx, MAD, and CAT serum levels, sperm motility, and protein levels of DAZL and DDX4. This investigation verified the more efficient effects of AD-Exo treatment in comparison to PRP in ameliorating busulfan-induced NOA rat models.
Assuntos
Azoospermia , Bussulfano , Modelos Animais de Doenças , Exossomos , Células-Tronco Mesenquimais , Plasma Rico em Plaquetas , Espermatogênese , Masculino , Animais , Exossomos/metabolismo , Exossomos/transplante , Azoospermia/terapia , Azoospermia/patologia , Azoospermia/induzido quimicamente , Espermatogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Ratos , Bussulfano/farmacologia , Plasma Rico em Plaquetas/metabolismo , Humanos , Testículo/metabolismo , Testículo/patologia , Ratos Sprague-DawleyRESUMO
Breast cancer is the most frequent cancer among women worldwide. Tumor immunology suggests relationships between the immune system, chronic inflammation, and cancer. The immune system may either prevent or promote carcinogenesis. Here, we evaluated molecular signaling pathways common in inflammation and cancer and detected the microRNAs which play pivotal roles in mediating these pathways. Using bioinformatics assays, signaling pathways common in inflammation and cancer, and microRNAs mediating these pathways were identified. MiR-590 was selected and cloned into the pLenti-III-eGFP vector and transfected into the breast cancer cell lines. The expression level of microRNA and the candidate genes was evaluated by real-time quantitative reverse transcription polymerase chain reaction, and the apoptosis level in transfected cells was measured by Annexin V-7AAD assay. The cell migration was tested by real-time quantitative reverse transcription polymerase chain reaction for MMP2/MMP9. The expression levels of miR-590 and the selected genes (i.e. JAK2, PI3K, MAPK1, and CREB) were measured 72 h after transfection. While miR-590 showed an over-expression, the genes were significantly down-regulated. A significant increase was observed in apoptosis level in both cell lines and MMP2/MMP9 was significantly decreased in MDA-MB-231 cells. MiR-590 was selected as a microRNA which triggers and down-regulates critical genes of signaling pathways similar in cancer and inflammation. Following the miR-590 treatment, JAK2, PI3K, MAPK1, and CREB were down-regulated and the apoptosis level was increased in breast cancer cell lines. Apparently, some microRNAs can be good candidates for novel treatments of cancer. Although miR-590 showed good results in this study, further studies are required to investigate the role of miR-590 in breast cancer therapy.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Inflamação/genética , MicroRNAs/genética , Apoptose/genética , Biomarcadores Tumorais/biossíntese , Neoplasias da Mama/patologia , Movimento Celular/genética , Proliferação de Células/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/biossíntese , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/patologia , Janus Quinase 2/biossíntese , Células MCF-7 , MicroRNAs/biossíntese , Proteína Quinase 1 Ativada por Mitógeno/biossíntese , Fosfatidilinositol 3-Quinases/biossíntese , Transdução de Sinais , TransfecçãoRESUMO
Long noncoding RNAs (lncRNAs) are prominent as crucial regulators of tumor establishment and are repeatedly dysregulated in multiple cancers. Therefore, lncRNAs have been identified to play an essential function in carcinogenesis and progression of cancer at genetic and epigenetic levels. FENDRR (fetal-lethal noncoding developmental regulatory RNA) as a LncRNA is a hallmark of various malignancies. FENDRR is crucial for multiple organs' development, such as the lung and heart. The effects of FENDRR under signaling pathways in different cancers have been identified. In addition, it has been verified that FENDRR can affect the development and progression of various cancers. In addition, FENDRR expression has been associated with epigenetic regulation of target genes participating in tumor immunity. Furthermore, FENDRR downregulation was observed in various types of cancers, including colorectal cancer, gastric cancer, pancreatic cancer, cholangiocarcinoma, liver cancer, gallbladder cancer, lung cancer, breast cancer, endometrial cancer, prostate cancer, chronic myeloid leukemia, osteosarcoma, and cutaneous malignant melanoma cells. Here, we review the biological functions and molecular mechanisms of FENDRR in several cancers, and we will discuss its potential as a cancer biomarker and as a probable option for cancer treatment.
Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Masculino , Humanos , RNA Longo não Codificante/genética , Epigênese Genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Pulmão/metabolismo , Regulação Neoplásica da Expressão GênicaRESUMO
In cancer patients, chemo/radio therapy may cause infertility by damaging the spermatogenesis affecting the self-renewal and differentiation of spermatogonial stem cells (SSCs). In vitro differentiation of stem cells especially mesenchymal stem cells (MSCs) into germ cells has recently been proposed as a new strategy for infertility treatment. The aim of this study was to evaluate the proliferation and differentiation of SSCs using their co-culture with Sertoli cells and conditioned medium (CM) from adipose tissue-derived MSCs (AD-MSCs). Testicular tissues were separated from 2-7 days old neonate Wistar Rats and after mechanical and enzymatic digestion, the SSCs and Sertoli cells were isolated and cultured in Dulbecco's modified eagle medium with 10% fetal bovine serum, 1X antibiotic, basic fibroblast growth factor, and glial cell line-derived neurotrophic factor. The cells were treated with the CM from AD-MSCs for 12 days and then the expression level of differentiation-related genes were measured. Also, the expression level of two major spermatogenic markers of DAZL and DDX4 was calculated. Scp3, Dazl, and Prm1 were significantly increased after treatment compared to the control group, whereas no significant difference was observed in Stra8 expression. The immunocytochemistry images showed that DAZL and DDX4 were positive in experimental group comparing with control. Also, western blotting revealed that both DAZL and DDX4 had higher expression in the treated group than the control group, however, no significant difference was observed. In this study, we concluded that the CM obtained from AD-MSCs can be considered as a suitable biological material to induce the differentiation in SSCs.
RESUMO
Crohn's Disease (CD), which usually leads to anal fistulas among patients, is the most important inflammatory bowel disease that causes morbidity in many people around the world. This review article proposes using MSCs as a hopeful therapeutic strategy for CD and anal fistula treatment in both preclinical and clinical conditions. Finally, darvadstrocel, a cell-based medication to treat complex anal fistulas in adults, as the only European Medicines Agency (EMA)-approved product for the treatment of anal fistulas in CD is addressed. Although several common therapies, such as surgery and anti-tumor necrosis factor-alpha (TNF-α) drugs as well as a combination of these methods is used to improve this disease, however, due to the low effectiveness of these treatments, the use of new strategies with higher efficiency is still recommended. Cell therapy is among the new emerging therapeutic strategies that have attracted great attention from clinicians due to its unique capabilities. One of the most widely used cell sources administrated in cell therapy is mesenchymal stem cell (MSC). This review article will discuss preclinical and clinical studies about MSCs as a potent and promising therapeutic option in the treatment of CD and anal fistula.
Assuntos
Doença de Crohn , Fístula , Doenças Inflamatórias Intestinais , Células-Tronco Mesenquimais , Adulto , Humanos , Doença de Crohn/terapia , Terapia Baseada em Transplante de Células e TecidosRESUMO
Endometriosis as a non-malignant gynecological disease leads to dysregulation of numerous cellular functions including apoptosis, angiogenesis, migration, proliferation, and inflammation. Accumulating evidence has shed light on the importance of endometrial stem cells within the menstrual blood which are involved in the establishment and progression of endometriotic lesions in a retrograde manner. According to the fact that the therapeutic benefits of mesenchymal stem cells are provided through paracrine functions, we used exosomes from menstrual blood-derived stem cells (MenSCs) for treating endometriotic stem cells to inhibit their lesion formation tendency. Menstrual blood samples from healthy and endometriosis women were collected. Isolated MenSCs by the density-gradient centrifugation method were characterized by flow cytometry. Secreted exosomes were isolated from healthy MenSCs (NE-MenSCs) and used to treat endometriotic cells (E-MenSCs). 72 h after treatment, different mechanisms and pathways including inflammation, proliferation, apoptosis, migration, and angiogenesis were analyzed using Real-Time PCR, ELISA, immunocytochemistry, annexin V/PI, and scratching assay. Exosome treatment significantly reduce the expression level of markers related to inflammation, proliferation, migration, and angiogenesis in E-MenSCs which are aberrantly expressed in endometriosis. Moreover, apoptosis was induced in E-MenSCs after treatment which was evaluated in both gene and protein levels. In this study, we give preliminary evidence for the potential of MenSCs-Exo in ameliorating endometriosis. Regarding our results, we suggest that after relevant clinical trial, MenSCs-derived exosomes can be considered as a better treatment option to improve endometriosis compared to common and conventional treatments and show their potential as a cell-free product in endometriosis repair.
Assuntos
Endometriose , Exossomos , Células-Tronco Mesenquimais , Humanos , Feminino , Endometriose/metabolismo , Exossomos/metabolismo , Células Cultivadas , Proliferação de Células , Células-Tronco Mesenquimais/metabolismo , Menstruação , Inflamação/metabolismoRESUMO
Endometriosis is a common, benign gynecological disease which is determined as an overspreading of endometrial tissue in exterior region of the uterine cavity. Evidence suggests that retrograde menstrual blood which contains mesenchymal stem cells with differential gene expression compared to healthy women may play a role in endometriosis creation. We aimed to identify whether the conditioned medium (CM) from menstrual blood-derived mesenchymal stem cells (MenSCs) of healthy women can affect the expression level of inflammatory and stemness genes of MenSCs from endometriosis women. Endometriosis-derived MenSCs (E-MenSCs) were treated with CM derived from healthy women's MenSCs (non-endometriosis derived MenSCs [NE-MenSCs]). Some CD markers were analyzed by flow cytometer before and after treatment compared with NE-MenSCs, and the expression level of inflammatory and stemness genes was evaluated by real-time PCR. E-MenSCs show different morphology in vitro culture in comparison with NE-MenSCs, which were changed in the presence of CM, into a morphology more similar to normal cells and showed significant decrease expression of CD10 after CM treatment. In our results, the interleukin-1, cyclooxygenase-2, and hypoxia-inducible factor 1α as inflamaturay genes and octamer-binding transcription factor 4, NANOG, and sex determining region Y-box 2 as stemness genes showed significantly different expression level in E-MenSCs after treating with CM. Our study indicates that the expression level of some inflammatory- and stemness-related genes which have differential expression in E-MenSCs compared with NEMenSCs, could be changed to normal status by using CM derived from NE-MenSCs.
RESUMO
BACKGROUND: Research into the pathogenesis of endometriosis would substantially promote its effective treatment and early diagnosis. Currently, accumulating evidence has shed light on the importance of endometrial stem cells within the menstrual blood which are involved in the establishment and progression of endometriotic lesions in a retrograde manner. OBJECTIVES: We aimed to identify the differences in some genes' expression between menstrual blood-derived mesenchymal stem cells (MenSCs) isolated from endometriosis patients (E-MenSCs) and MenSCs from healthy women (NE-MenSCs). METHODS: Menstrual blood samples (2-3 mL) from healthy and endometriosis women in the age range of 22-35 years were collected. Isolated MenSCs by the Ficoll-Paque density-gradient centrifugation method were characterized by flow cytometry. MenSCs were evaluated for key related endometriosis genes by real-time-PCR. RESULTS: E-MenSCs were morphologically different from NE-MenSCs and showed, respectively, higher and lower expression of CD10 and CD9. Furthermore, E-MenSCs had higher expression of Cyclin D1 (a cell cycle-related gene) and MMP-2 and MMP-9 (migration- and invasion-related genes) genes compared with NE-MenSCs. Despite higher cell proliferation in E-MenSCs, the BAX/BCL-2 ratio was significantly lower in E-MenSCs compared to NE-MenSCs. Also, the level of inflammatory genes such as IL1ß, IL6, IL8, and NF-κB and stemness genes including SOX2 and SALL4 was increased in E-MenSCs compared with NE-MenSCs. Further, VEGF, as a potent angiogenic factor, showed a significant increase in E-MenSCs rather than NE-MenSCs. However, NE-MenSCs showed increased ER-α and ß-catenin when compared with E-MenSCs. CONCLUSION: Here, we showed that there are gene expression differences between E-MenSCs and NE-MenSCs. These findings propose that MenSCs could play key role in the pathogenesis of endometriosis and further support the menstrual blood retrograde theory of endometriosis formation. This could be of great importance in exploiting promising therapeutic targets and new biomarkers for endometriosis treatment and prognosis.
Assuntos
Endometriose/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Menstruação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Adulto , Endometriose/patologia , Feminino , Humanos , Células-Tronco Mesenquimais/patologiaRESUMO
One of the most intricate infertility problems among women is the number and quality of the oocytes. Menstrual blood-derived stem cells (MenSCs) are a recently discovered source of mesenchymal stem cells which is known as a suitable source of cells for regenerative medicine. We aimed to investigate whether MenSCs as autologous cell source from endometriosis, PCOS, and healthy women have different characteristics regarding their morphology, CD marker expression pattern, differentiation potential into oocyte-like cells, and oocyte-related genes expression. Menstrual blood samples (1-2 ml) from healthy and infertile women (PCOS and endometriosis) in the age range of 22-35 years were collected. Isolated MenSCs by the Ficoll-Paque density-gradient centrifugation method was characterized by flow cytometry. MenSCs were induced under 20 % follicular fluid (FF), and then they were evaluated for differentiation by Real time-PCR and immunocytochemistry assay. MenSCs derived from endometriosis women had different morphology from PCOS and healthy women, but similar regarding their CD marker pattern. All induced MenSCs showed morphological changes and expressed oocyte related genes (STELLA, GDF9, STRA8, PRDM, LHR, FSHR, SCP3, DDX4, and ZP2) in the 2nd week of culture, but there was a significant difference between the groups. Endometriosis-derived MenSCs showed higher levels of both gene and protein expressions. These findings propose that MenSCs derived from endometriosis and PCOS patients under 20 % FF, not only could differentiate into oocyte-like cells, but also showed more differential potential in comparison with healthy women. This indicates the possibility of using the patients' own MenSCs to differentiate into the oocyte-like cells.
Assuntos
Diferenciação Celular/fisiologia , Infertilidade Feminina , Oócitos/fisiologia , Adulto , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Menstruação/sangue , Células-Tronco Mesenquimais/citologia , Adulto JovemRESUMO
BACKGROUND: Despite recent advances in scientific knowledge and clinical practice, management, and treatment of breast cancer, as one of the leading causes of female mortality, breast cancer remains a major burden. Recently, methods employing stem cells and their derivatives, i.e., exosomes, in gene-based therapies hold great promise. Since these natural nanovesicles are able to transmit crucial cellular information which can be engineered to have robust delivery and targeting capacity, they are considered one of the modes of intercellular communication. miR-145, one of the downregulated microRNAs (miRNAs) in various cancers, can regulate tumor cell invasion, metastasis, apoptosis, and proliferation and stem cell differentiation. OBJECTIVES: The aim of this study was to investigate the role of exosomes secreted from adipose tissue-derived mesenchymal stem cells (MSCs) for miR-145 transfection into breast cancer cells in order to weaken their expansion and metastasis. METHODS: Here, we exploited the exosomes from adipose tissue-derived mesenchymal stem cells (MSC-Exo) to deliver miR-145 in the T-47D breast cancer cell line. Lentiviral vectors of miR-145-pLenti-III-enhanced green fluorescent protein (eGFP) and empty pLenti-III-eGFP as the backbone were used to transfect MSCs and T-47D cells. In order to find the efficiency of exosomes as a delivery vehicle, the expression level of some miR-145 target genes, including Rho-Associated Coiled-Coil Containing Protein Kinase 1 (ROCK1), Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2), Matrix Metalloproteinase 9 (MMP9), and Tumor Protein p53 (TP53), was compared in all treatment groups (T-47D cells treated by miR-145-transfected MSCs and their derivatives or their backbone) and control group (untransfected T-47D cells) using real-time PCR. RESULTS: The obtained data represented the inhibitory effect of miR-145 on apoptosis induction and metastasis in both direct miR-treated groups. However, exosome-mediated delivery caused an improved anticancer property of miR-145. CONCLUSION: Restoration of miR-145 using MSC-Exo can be considered a potential novel therapeutic strategy in breast cancer in the future.
Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Transfecção , Tecido Adiposo/citologia , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , Exossomos/ultraestrutura , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , MicroRNAs/genética , Metástase Neoplásica , Receptor ErbB-2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismoRESUMO
BACKGROUND: Exosomes as extracellular vesicles (EVs) are nanoscale intercellular messengers secreted from cells to deliver biological signals. Today, exosomes have become a new field of research in regenerative medicine and are considered as potential therapies to control inflammation and wound healing and enhance and improve healing in many diseases. Given the global burden of osteoarthritis (OA) as the fastest-growing health condition and one of the major causes of physical disability in the aging population, research to establish EVs as therapeutic products can meet the basic clinical needs in the management of osteoarthritis and provide a therapeutic solution. OBJECTIVES: The present study is aimed at evaluating the regenerative potentials of the exosomes secreted from adipose and bone marrow tissue-derived mesenchymal stem cells (AD- and BM-MSCs) in ameliorating the symptoms of OA. METHOD: In this experimental study, AD- and BM-MSCs were isolated and cultured in the laboratory until passage 3. Finally, these cells' secreted exosomes were isolated from their conditioned medium. Ciprofloxacin-induced OA mouse models underwent intra-articular injection of exosomes from AD-MSCs and BM-MSCs. Finally, the expression levels of collagen I and II, sox9, and aggrecan genes using real-time PCR, histological analysis, and immunohistochemical (IHC) studies were performed. RESULTS: Real-time PCR data showed that although the expression level of collagen type II was lower in both exosome-treated groups than the normal, but it was significantly increased in comparison with the sham and OA, with higher expression in BM-Exo rather than AD-Exo group. Similarly, the histological staining and IHC results have provided almost identical data, emphasizing on better therapeutic effect of BM-MSCs-exosome than AD-MSCs-exosome. CONCLUSION: BM-MSCs secreted exosomes in comparison with AD-MSCs could be considered as a better therapeutic option to improve osteoarthritis and exhibit potential as a disease-modifying osteoarthritis cell-free product.
Assuntos
Tecido Adiposo/metabolismo , Medula Óssea/metabolismo , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/patologia , Animais , Colágeno/metabolismo , Modelos Animais de Doenças , Exossomos/ultraestrutura , Regulação da Expressão Gênica , Camundongos Endogâmicos BALB C , Osteoartrite/genéticaRESUMO
OBJECTIVE: There are several factors, like environmental agents, neurotrophic factors, serotonin and some hormones such as estrogen, affecting neurogenesis and neural differentiation. Regarding to importance of proliferation and regeneration in central nervous system, and a progressive increase in neurodegenerative diseases, cell therapy is an attractive approach in neuroscience. The aim of the present study was to investigate the effects of sex steroid hormones and basic fibroblast growth factor (bFGF) on neuronal differentiation of mouse bone marrow-derived mesenchymal stem cells (BM-MSCs). MATERIALS AND METHODS: This experimental study was established in Kharazmi Univer- sity. BM was isolated from the bones of femur and tibia of 4-6-week old Naval Medical Research Institute (NMRI) mice, and the cells were cultured. The cells were divided into following 4 groups based on the applied treatments: I. control (no treatment), II. steroid hormones (ß-estradiol, progesterone and testosterone), III. bFGF and IV. combination of steroid hormones and bFGF. Immunocytochemistry and flow cytometery analyses were applied for beta III-tubulin (ß-III tubulin) and microtubule-associated proteins-2 (MAP-2) in 4 days of treatment for all groups. RESULTS: The cells treated with combination of bFGF and steroid hormones represented more expressions of neural markers as compared to control and to other two groups treated with either bFGF or steroid hormones. CONCLUSION: This study showed that BM-MSCs can express specific neural markers after receiving bFGF pretreatment that was followed by sex steroid hormones treatment. More investigations are necessary to specify whether steroid hormones and bFGF can be considered for treatment of CNS diseases and disorders.
RESUMO
BACKGROUND: Polycystic ovarian syndrome (PCOS) is a low-grade inflammatory disease characterized by hyperandrogenemia, hirsutism, chronic anovulation and vascular disorder. Interleukin-6 (IL-6), cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) are triggered by inflammatory stimuli and lead to angiogenesis and pathogenesis of the ovary. Honeybee venom (HBV) contains an array of biologically active components possessing various pharmaceutical properties. This study was designed to assess the possibility of HBV application as an anti-inflammatory therapeutic agent to suppress levels of the main inflammatory mediators IL-6, COX-2 and VEGF.To induce PCOS, 1 mg of estradiol valerate (EV) per 100 g of body weight was subcutaneously (SC) injected into eight-week-old rats. After 60 days, 0.5 mg/kg of HBV was administered Intraperitoneal (IP) for 14 consecutive days, and the results of PCOS treatment were investigated. Rats were then anesthetized with CO2, and the ovaries were surgically removed. Serum IL-6 was detected by the ELISA kit. Immunoexpression of COX-2 and VEGF were examined in three groups: EV-induced PCOS, HBV-treated PCOS and control animals. RESULTS: Thickness of theca layer, number and diameter of cysts and levels of IL-6 significantly decreased in HBV group relative to PCOS group. The immunohistochemical analysis showed an increase in COX-2 and VEGF expression in PCOS group whereas HBV-treated rats presented weak and irregular immunostaining. CONCLUSIONS: Our results suggest that the beneficial effect of HBV may be mediated through its inhibitory effect on serum IL-6 level and ovarian COX-2 and VEGF expression.
RESUMO
Background : Polycystic ovarian syndrome (PCOS) is a low-grade inflammatory disease characterized by hyperandrogenemia, hirsutism, chronic anovulation and vascular disorder. Interleukin-6 (IL-6), cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) are triggered by inflammatory stimuli and lead to angiogenesis and pathogenesis of the ovary. Honeybee venom (HBV) contains an array of biologically active components possessing various pharmaceutical properties. This study was designed to assess the possibility of HBV application as an anti-inflammatory therapeutic agent to suppress levels of the main inflammatory mediators IL-6, COX-2 and VEGF. To induce PCOS, 1 mg of estradiol valerate (EV) per 100 g of body weight was subcutaneously (SC) injected into eight-week-old rats. After 60 days, 0.5 mg/kg of HBV was administered Intraperitoneal (IP) for 14 consecutive days, and the results of PCOS treatment were investigated. Rats were then anesthetized with CO2, and the ovaries were surgically removed. Serum IL-6 was detected by the ELISA kit. Immunoexpression of COX-2 and VEGF were examined in three groups: EV-induced PCOS, HBV-treated PCOS and control animals. Results : Thickness of theca layer, number and diameter of cysts and levels of IL-6 significantly decreased in HBV group relative to PCOS group. The immunohistochemical analysis showed an increase in COX-2 and VEGF expression in PCOS group whereas HBV-treated rats presented weak and irregular immunostaining. Conclusions : Our results suggest that the beneficial effect of HBV may be mediated through its inhibitory effect on serum IL-6 level and ovarian COX-2 and VEGF expression.
RESUMO
Background : Polycystic ovarian syndrome (PCOS) is a low-grade inflammatory disease characterized by hyperandrogenemia, hirsutism, chronic anovulation and vascular disorder. Interleukin-6 (IL-6), cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) are triggered by inflammatory stimuli and lead to angiogenesis and pathogenesis of the ovary. Honeybee venom (HBV) contains an array of biologically active components possessing various pharmaceutical properties. This study was designed to assess the possibility of HBV application as an anti-inflammatory therapeutic agent to suppress levels of the main inflammatory mediators IL-6, COX-2 and VEGF. To induce PCOS, 1 mg of estradiol valerate (EV) per 100 g of body weight was subcutaneously (SC) injected into eight-week-old rats. After 60 days, 0.5 mg/kg of HBV was administered Intraperitoneal (IP) for 14 consecutive days, and the results of PCOS treatment were investigated. Rats were then anesthetized with CO2, and the ovaries were surgically removed. Serum IL-6 was detected by the ELISA kit. Immunoexpression of COX-2 and VEGF were examined in three groups: EV-induced PCOS, HBV-treated PCOS and control animals. Results : Thickness of theca layer, number and diameter of cysts and levels of IL-6 significantly decreased in HBV group relative to PCOS group. The immunohistochemical analysis showed an increase in COX-2 and VEGF expression in PCOS group whereas HBV-treated rats presented weak and irregular immunostaining. Conclusions : Our results suggest that the beneficial effect of HBV may be mediated through its inhibitory effect on serum IL-6 level and ovarian COX-2 and VEGF expression.(AU)