Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 330(1): 142-51, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19363060

RESUMO

Orexins are peptides produced by lateral hypothalamic neurons that exert a prominent role in the maintenance of wakefulness by activating orexin-1 (OX1R) and orexin-2 (OX2R) receptor located in wake-active structures. Pharmacological blockade of both receptors by the dual OX1/2R antagonist (2R)-2-[(1S)-6,7-dimethoxy-1-{2-[4-(trifluoromethyl)phenyl]ethyl}-3,4-dihydroisoquinolin-2(1H)-yl]-N-methyl-2-phenylethanamide (almorexant) has been shown to promote sleep in animals and humans during their active period. However, the selective distribution of OX1R and OX2R in distinct neuronal circuits may result in a differential impact of these receptors in sleep-wake modulation. The respective role of OX1R and OX2R on sleep in correlation with monoamine release was evaluated in rats treated with selective antagonists alone or in combination. When administered in either phase of the light/dark cycle, the OX2R antagonist 1-(2,4-dibromophenyl)-3-[(4S,5S)-2,2-dimethyl-4-phenyl-1,3-dioxan-5-yl]urea (JNJ-10397049) decreased the latency for persistent sleep and increased nonrapid eye movement and rapid eye movement sleep time. Almorexant produced less hypnotic activity, whereas the OX1R antagonist 1-(6,8-difluoro-2-methylquinolin-4-yl)-3-[4-(dimethylamino)phenyl]urea (SB-408124) had no effect. Microdialysis studies showed that either OX2R or OX1/2R antagonism decreased extracellular histamine concentration in the lateral hypothalamus, whereas both OX1R and OX1/2R antagonists increased dopamine release in the prefrontal cortex. Finally, coadministration of the OX1R with the OX2R antagonist greatly attenuated the sleep-promoting effects of the OX2R antagonist. These results indicate that blockade of OX2R is sufficient to initiate and prolong sleep, consistent with the hypothesis of a deactivation of the histaminergic system. In addition, it is suggested that simultaneous inhibition of OX1R attenuates the sleep-promoting effects mediated by selective OX2R blockade, possibly correlated with dopaminergic neurotransmission.


Assuntos
Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores de Neuropeptídeos/fisiologia , Sono/efeitos dos fármacos , Sono/fisiologia , Acetamidas/farmacologia , Animais , Isoquinolinas/farmacologia , Masculino , Receptores de Orexina , Ratos , Ratos Sprague-Dawley
2.
Front Behav Neurosci ; 11: 83, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28533747

RESUMO

Orexins peptides exert a prominent role in arousal-related processes including stress responding, by activating orexin-1 (OX1R) and orexin-2 (OX2R) receptors located widely throughout the brain. Stress or orexin administration stimulates hyperarousal, adrenocorticotropic hormone (ACTH) and corticosterone release, and selective OX1R blockade can attenuate several stress-induced behavioral and cardiovascular responses but not the hypothalamic-pituitary-adrenal (HPA) axis activation. As opposed to OX1R, OX2R are preferentially expressed in the paraventricular hypothalamic nucleus which is involved in the HPA axis regulation. In the present study, we investigated the effects of a psychological stress elicited by cage exchange (CE) on ACTH release in two murine models (genetic and pharmacological) of selective OX2R inhibition. CE-induced stress produced a significant increase in ACTH serum levels. Mice lacking the OX2R exhibited a blunted stress response. Stress-induced ACTH release was absent in mice pre-treated with the selective OX2R antagonist JNJ-42847922 (30 mg/kg po), whereas pre-treatment with the dual OX1/2R antagonist SB-649868 (30 mg/kg po) only partially attenuated the increase of ACTH. To assess whether the intrinsic and distinct sleep-promoting properties of each antagonist could account for the differential stress response, a separate group of mice implanted with electrodes for standard sleep recording were orally dosed with JNJ-42847922 or SB-649868 during the light phase. While both compounds reduced the latency to non-rapid eye movement (NREM) sleep without affecting its duration, a prevalent REM-sleep promoting effect was observed only in mice treated with the dual OX1/2R antagonist. These data indicate that in a psychological stress model, genetic or pharmacological inhibition of OX2R markedly attenuated stress-induced ACTH secretion, as a separately mediated effect from the NREM sleep induction of OX2R antagonism.

3.
J Med Chem ; 58(14): 5620-36, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26087021

RESUMO

The preclinical characterization of novel octahydropyrrolo[3,4-c]pyrroles that are potent and selective orexin-2 antagonists is described. Optimization of physicochemical and DMPK properties led to the discovery of compounds with tissue distribution and duration of action suitable for evaluation in the treatment of primary insomnia. These selective orexin-2 antagonists are proven to promote sleep in rats, and this work ultimately led to the identification of a compound that progressed into human clinical trials for the treatment of primary insomnia. The synthesis, SAR, and optimization of the pharmacokinetic properties of this series of compounds as well as the identification of the clinical candidate, JNJ-42847922 (34), are described herein.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Neuropeptídeos/antagonistas & inibidores , Pirróis/química , Pirróis/farmacologia , Animais , Ensaios Clínicos como Assunto , Cães , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Neuropeptídeos/metabolismo , Receptores de Orexina/metabolismo , Orexinas , Pirróis/farmacocinética , Pirróis/uso terapêutico , Ratos , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Relação Estrutura-Atividade , Especificidade por Substrato
4.
ACS Med Chem Lett ; 6(4): 450-4, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25893048

RESUMO

The preclinical characterization of novel phenyl(piperazin-1-yl)methanones that are histamine H3 receptor antagonists is described. The compounds described are high affinity histamine H3 antagonists. Optimization of the physical properties of these histamine H3 antagonists led to the discovery of several promising lead compounds, and extensive preclinical profiling aided in the identification of compounds with optimal duration of action for wake promoting activity. This led to the discovery of two development candidates for Phase I and Phase II clinical trials.

5.
Front Neurosci ; 8: 28, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24592208

RESUMO

In accordance with the prominent role of orexins in the maintenance of wakefulness via activation of orexin-1 (OX1R) and orexin-2 (OX2R) receptors, various dual OX1/2R antagonists have been shown to promote sleep in animals and humans. While selective blockade of OX2R seems to be sufficient to initiate and prolong sleep, the beneficial effect of additional inhibition of OX1R remains controversial. The relative contribution of OX1R and OX2R to the sleep effects induced by a dual OX1/2R antagonist was further investigated in the rat, and specifically on rapid eye movement (REM) sleep since a deficiency of the orexin system is associated with narcolepsy/cataplexy based on clinical and pre-clinical data. As expected, the dual OX1/2R antagonist SB-649868 was effective in promoting non-REM (NREM) and REM sleep following oral dosing (10 and 30 mg/kg) at the onset of the dark phase. However, a disruption of REM sleep was evidenced by a more pronounced reduction in the onset of REM as compared to NREM sleep, a marked enhancement of the REM/total sleep ratio, and the occurrence of a few episodes of direct wake to REM sleep transitions (REM intrusion). When administered subcutaneously, the OX2R antagonist JNJ-10397049 (10 mg/kg) increased NREM duration whereas the OX1R antagonist GSK-1059865 (10 mg/kg) did not alter sleep. REM sleep was not affected either by OX2R or OX1R blockade alone, but administration of the OX1R antagonist in combination with the OX2R antagonist induced a significant reduction in REM sleep latency and an increase in REM sleep duration at the expense of the time spent in NREM sleep. These results indicate that additional blockade of OX1R to OX2R antagonism elicits a dysregulation of REM sleep by shifting the balance in favor of REM sleep at the expense of NREM sleep that may increase the risk of adverse events. Translation of this hypothesis remains to be tested in the clinic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA