Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 15(7): e1008273, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31329584

RESUMO

5' ends are important for determining the fate of RNA molecules. BCDIN3D is an RNA phospho-methyltransferase that methylates the 5' monophosphate of specific RNAs. In order to gain new insights into the molecular function of BCDIN3D, we performed an unbiased analysis of its interacting RNAs by Thermostable Group II Intron Reverse Transcriptase coupled to next generation sequencing (TGIRT-seq). Our analyses showed that BCDIN3D interacts with full-length phospho-methylated tRNAHis and miR-4454. Interestingly, we found that miR-4454 is not synthesized from its annotated genomic locus, which is a primer-binding site for an endogenous retrovirus, but rather by Dicer cleavage of mature tRNAHis. Sequence analysis revealed that miR-4454 is identical to the 3' end of tRNAHis. Moreover, we were able to generate this 'miRNA' in vitro through incubation of mature tRNAHis with Dicer. As found previously for several pre-miRNAs, a 5'P-tRNAHis appears to be a better substrate for Dicer cleavage than a phospho-methylated tRNAHis. Moreover, tRNAHis 3'-fragment/'miR-4454' levels increase in cells depleted for BCDIN3D. Altogether, our results show that in addition to microRNAs, BCDIN3D regulates tRNAHis 3'-fragment processing without negatively affecting tRNAHis's canonical function of aminoacylation.


Assuntos
RNA Helicases DEAD-box/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metiltransferases/genética , RNA de Transferência de Histidina/metabolismo , Ribonuclease III/genética , Linhagem Celular , Humanos , MicroRNAs/genética , Análise de Sequência de RNA , Aminoacilação de RNA de Transferência
2.
PLoS Genet ; 12(7): e1006139, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27441695

RESUMO

RNA levels are widely thought to be predictive of RNA function. However, the existence of more than a hundred chemically distinct modifications of RNA alone is a major indication that these moieties may impart distinct functions to subgroups of RNA molecules that share a primary sequence but display distinct RNA "epigenetic" marks. RNAs can be modified on many sites, including 5' and 3' ends, the sugar phosphate backbone, or internal bases, which collectively provide many opportunities for posttranscriptional regulation through a variety of mechanisms. Here, we will focus on how modifications on messenger and microRNAs may affect the process of RNA interference in mammalian cells. We believe that taking RNA modifications into account will not only advance our understanding of this crucial pathway in disease and cancer but will also open the path to exploiting the enzymes that "write" and "erase" them as targets for therapeutic drug development.


Assuntos
Interferência de RNA , Processamento Pós-Transcricional do RNA , Animais , Humanos , Metilação , MicroRNAs/fisiologia , RNA Mensageiro/fisiologia
3.
J Vis Exp ; (149)2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31355783

RESUMO

There are more than 100 chemically distinct modifications of RNA, two thirds of which consist of methylations. Interest in RNA modifications, and especially methylations, has re-emerged due to the important roles played by the enzymes that write and erase them in biological processes relevant to disease and cancer. Here, a sensitive in vitro assay for accurate analysis of RNA methylation writer activity on synthetic or in vitro transcribed RNAs is provided. This assay uses a tritiated form of S-adenosyl-methionine, resulting in direct labeling of methylated RNA with tritium. The low energy of tritium radiation makes the method safe, and pre-existing methods of tritium signal amplification, make it possible to quantify and to visualize the methylated RNA without the use of antibodies, which are commonly prone to artifacts. While this method is written for RNA methylation, few tweaks make it applicable to the study of other RNA modifications that can be radioactively labeled, such as RNA acetylation with 14C acetyl coenzyme A. Overall, this assay allows to quickly assess RNA methylation conditions, inhibition with small molecule inhibitors, or the effect of RNA or enzyme mutants, and provides a powerful tool to validate and expand results obtained in cells.


Assuntos
Ensaios Enzimáticos/métodos , Metiltransferases/metabolismo , RNA/metabolismo , Humanos , Metilação , S-Adenosilmetionina/metabolismo
4.
Cell Rep ; 22(6): 1374-1383, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29425494

RESUMO

RNAP II switching from the paused to the productive transcription elongation state is a pivotal regulatory step that requires specific phosphorylations catalyzed by the P-TEFb kinase. Nucleosolic P-TEFb activity is inhibited by its interaction with the ribonuclear protein complex built around the 7SK small nuclear RNA (7SK snRNP). MePCE is the RNA methyltransferase that methylates and stabilizes 7SK in the nucleosol. Here, we report that MePCE also binds chromatin through the histone H4 tail to serve as a P-TEFb activator at specific genes important for cellular identity. Notably, this histone binding abolishes MePCE's RNA methyltransferase activity toward 7SK, which explains why MePCE-bound P-TEFb on chromatin may not be associated with the full 7SK snRNP and is competent for RNAP II activation. Overall, our results suggest that crosstalk between the histone-binding and RNA methylation activities of MePCE regulates P-TEFb activation on chromatin in a 7SK- and Brd4-independent manner.


Assuntos
Regulação da Expressão Gênica/fisiologia , Histonas/metabolismo , Metiltransferases/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , RNA/metabolismo , Linhagem Celular , Cromatina/metabolismo , Humanos , Metilação , Receptor Cross-Talk
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA