Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Physiol ; 11: 630646, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33551851

RESUMO

OBJECTIVE: Current treatment options for patients with stage 5 chronic kidney disease before dialysis (predialysis CKD-5) are determined by individual circumstances, economic factors, and the doctor's advice. This study aimed to explore the plasma metabolic traits of patients with predialysis CKD-5 compared with maintenance hemodialysis (HD) and peritoneal dialysis (PD) patients, to learn more about the impact of the dialysis process on the blood environment. METHODS: Our study enrolled 31 predialysis CKD-5 patients, 31 HD patients, and 30 PD patients. Metabolite profiling was performed using a targeted metabolomics platform by applying an ultra-high-performance liquid chromatography-tandem mass spectrometry method, and the subsequent comparisons among all three groups were made to explore metabolic alterations. RESULTS: Cysteine metabolism was significantly altered between predialysis CKD-5 patients and both groups of dialysis patients. A disturbance in purine metabolism was the most extensively changed pathway identified between the HD and PD groups. A total of 20 discriminating metabolites with large fluctuations in plasma concentrations were screened from the group comparisons, including 2-keto-D-gluconic acid, kynurenic acid, s-adenosylhomocysteine, L-glutamine, adenosine, and nicotinamide. CONCLUSION: Our study provided a comprehensive metabolomics evaluation among predialysis CKD-5, HD, and PD patients, which described the disturbance of metabolic pathways, discriminating metabolites and their possible biological significances. The identification of specific metabolites related to dialysis therapy might provide insights for the management of advanced CKD stages and inform shared decision-making.

2.
Front Cell Dev Biol ; 8: 811, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974348

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is a complex process, involving the alteration of multiple genes and signaling pathways, and the pathogenesis of ADPKD remains largely unknown. Here, we demonstrated the suppressive role of sorting nexin 9 (SNX9) during ADPKD development. Sorting nexin 9 expression was detected in the kidney tissues of ADPKD patients, for the first time, and SNX9 expression was also detected in Pkd1 knockout (Pkd1 -/-) and control mice. Subsequently, a series of gain- and loss-of-function studies were performed, to explore the biological roles and underlying molecular mechanisms of SNX9 in ADPKD progression. The expression of SNX9 was significantly downregulated in ADPKD patients and Pkd1 -/- mice compared with control individuals and wild-type mice (Pkd1+/+), respectively. The ectopic expression of SNX9 significantly inhibited ADPKD cell proliferation, renal cyst formation and enlargement, whereas these effects were promoted by SNX9 silencing. Mechanistically, we found that SNX9 interacted directly with yes-associated protein (YAP) and increased the large tumor suppressor kinase 1-mediated phosphorylation of YAP, resulting in the cytoplasmic retention of YAP, the decreased transcriptional activity of the YAP/TEA domain transcription factor 4 complex, and, consequently, the inhibition of Hippo target gene expression and ADPKD development. Taken together, our findings provided novel insights into the role played by SNX9 during ADPKD pathogenesis and may reveal novel therapeutic approaches for ADPKD and related kidney diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA