Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Am Chem Soc ; 146(36): 25211-25220, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39197149

RESUMO

Organic molecules and polymers have recently been intensively explored for afterglow materials owing to their low cost and flexible design. However, they normally fail to generate long-persistent luminescence at elevated temperatures, mostly due to the fast deactivation of triplet excited states. Here, we report that polycyclic aromatic compounds (PACs) individually confined in a B2O3 crystalloid emit long-persistent luminescence at high temperatures up to 400 °C. This is facilely accomplished by dispersing a series of aromatic derivatives in an aqueous solution of boric acid, followed by drying, melting, and dehydrating. The resulting highly rigid and thermostable B2O3 crystalloid network provides a matched ultrastrong confinement effect and completely restricts the vibration and rotation of the molecularly distributed PACs even at ultrahigh temperatures and thereby prevents the nonradiative dissipation of triplet excitons and promotes the generation of ultrahigh-temperature long-persistent luminescence. The afterglow colors are responsive to both temperature and time, spanning from ultraviolet to near-infrared regions over a wide temperature range, which is substantially modulated by the subtle balance of phosphorescence and thermally activated delayed fluorescence. These features favor the creation of advanced afterglow materials for visual 3D temperature probing, anticounterfeiting, and data encryption in extreme environments.

2.
J Comput Chem ; 45(8): 454-460, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37945374

RESUMO

In this work, DFT theoretical calculations were employed to investigate the enantiomerization of helicenes embedded with five-membered heterocycles. The original benzene rings in the helicene backbone were replaced by heterocycles such as furan, thiophene, pyrrole, or phosphole to create [n]helicenes with n ranging from 4 to 7. The impact of the type, position, and number of heterocycles on the enantiomerization barrier was systematically evaluated. Notably, the enantiomerization barrier was found to be significantly dependent on the rotatory angle and the position of the heterocycles, particularly for [4, 5]helicenes. With less rotatory angle of heterocycle, the enantiomerization barrier of helicenes was revealed to be lower, while when the heterocycle was close to the central part of the helicene chain, the barrier was also lower. Furthermore, the number of thiophene rings also had a marked effect on enantiomerization, showing a decrease of the barrier with more thiophene rings placed on the helicenes backbone. We expect this work would deliver new perspective on the relative studies for the helicene conformational conversion.

3.
Molecules ; 29(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39274847

RESUMO

Nanographenes are of increasing importance owing to their potential applications in the photoelectronic field. Meanwhile, recent studies have primarily focused on the pure electronic spectra of nanographenes, which have been found to be inadequate for describing the experimental spectra that contain vibronic progressions. In this study, we focused on the vibronic effect on the electronic transition of a range of chiral nanographenes, especially in the low-energy regions with distinct vibronic progressions, using theoretical calculations. All the calculations were performed at the PBE0-D3(BJ)/def2-TZVP level of theory, adopting both time-dependent and time-independent approaches with Franck-Condon approximation. The resulting calculated curves exhibited good alignment with the experimental data. Notably, for the nanographenes incorporating helicene units, owing to the increasing π-extension, the major vibronic modes in the vibrationally resolved spectra differed significantly from those of the primitive helicenes. This investigation suggests that calculations that account for the vibronic effect could have better reproducibility compared with calculations based solely on pure electronic transitions. We anticipate that this study could pave the way for further investigations into optical and chiroptical properties, with a deeper understanding of the vibronic effect, thereby providing theoretical explanations with higher precision on more sophisticated nanographenes.

4.
Angew Chem Int Ed Engl ; 63(11): e202320076, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38230611

RESUMO

We report a unique category of π-extended diaza[7]helicenes with double negative curvatures. This is achieved by two-fold regioselective heptagonal cyclization of the oligoarylene-carbazole precursors through either intramolecular C-H arylation or Scholl reaction. The fusion of two heptagonal rings in the helical skeleton dramatically increases the intramolecular strain and forces the two terminal carbazole moieties to stack in a compressed fashion. The presence of the deformable negatively curved heptagonal rings endows the resulting diaza[7]helicenes with dynamic chiral skeletons, aggregation-induced emission feature and relatively low racemization barrier of ca. 25.6 kcal mol-1 . Further π-extension on the carbazole moieties subsequently leads to a more sophisticated C2 -symmetric homochiral triple helicene. Notably, these π-extended diaza[7]helicenes show structure-dependent stacking upon crystallization, switching from heterochiral packing to intra-layer homochiral stacking. Interestingly, the C2 -symmetric triple helicene molecules spontaneously resolve into a homochiral lamellar structure with 31 helix symmetry. Upon ultrasonication in a nonsolvent, the crystals can be readily exfoliated into large-area ultrathin nanosheets with height of ca. 4.4 nm corresponding to two layers of stacked triple helicene molecules and relatively thicker nanosheets constituted by even-numbered molecular lamellae. Moreover, regular hexagonal thin platelets with size larger than 30 µm can be readily fabricated by flash aggregation.

5.
Angew Chem Int Ed Engl ; : e202416319, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284773

RESUMO

Despite extensive studies has been explored on single-molecule switches and rectifiers, the design of single-molecule inductors has not been explored due to the experimental challenges in the investigation of frequency-dependent charge transport at the single-molecule scale. In this study, we synthesized a helicene-based helical molecular wire and carried out meticulous single-molecule conductance measurements, combined with current-voltage (IV) studies with varying frequencies using the scanning tunneling microscope break junction (STM-BJ) technique. Our results reveal the formation of a single-molecule junction and highlight the unique behavior of the molecular wire in response to different alternating current (AC) varying frequencies. The transport of charges occurs selectively either through the coiled backbone of the conjugated helical structure or vertically via π-π stacking, depending on the frequency of the applied AC. Notably, our investigation demonstrates the functionality of the wire as an inductor at low frequencies, and a capacitor at high frequencies. This work lays the foundation for a systematic approach to designing, fabricating, and implementing single-molecule logic devices such as inductors and wave filters.

6.
J Am Chem Soc ; 145(10): 5952-5959, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36795894

RESUMO

Curved nanographenes (NGs) are emerging as promising candidates for organic optoelectronics, supramolecular materials, and biological applications. Here we report a distinctive type of curved NGs bearing a [1,4]diazocine core that is fused with four pentagonal rings. This is formed by Scholl-type cyclization of two adjacent carbazole moieties through an unusual diradical cation mechanism followed by C-H arylation. Owing to the strain in the unique 5-5-8-5-5-membered ring skeleton, the resulting NG adopts an interesting concave-convex cooperatively dynamic structure. By peripheral π-extension, a helicene moiety with fixed helical chirality can be further mounted to modulate the vibration of the concave-convex structure, through which the distant bay region of the curved NG inherits the chirality of the helicene moiety in a reversed fashion. The [1,4]diazocine-embedded NGs show typical electron-rich characteristics and form charge transfer complexes with tunable emissions with a series of electron acceptors. The relatively protruding armchair edge also allows the fusion of three NGs into a C2 symmetric triple diaza[7]helicene which reveals a subtle balance of fixed and dynamic chirality.

7.
Chirality ; 35(9): 569-576, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37051766

RESUMO

Enantiopure helicenes have been extensively investigated due to their outstanding chiroptical properties, while helicene racemates are considered as chiroptically silent. Here, we describe a facile method to produce circularly polarized luminescence (CPL) from helicene racemates via supramolecular association with DNA in aqueous solution. Racemic cationic helicene derivatives are immobilized in the grooves of commercially available double-stranded right-handed DNA, and the discrimination of left- and right-handed helicenes by chiral DNA is monitored by single molecule force spectroscopy. This subsequently leads to the generation of prominent CPL with dissymmetric factor |glum | of close to 0.01, which is approximate to enantiopure helicenes. The strategy developed in this work avoids the tedious and expensive chiral resolution process and provides a distinctive insight into the fabrication of CPL-emitting systems.


Assuntos
Luminescência , Compostos Policíclicos , Estereoisomerismo , DNA
8.
Angew Chem Int Ed Engl ; 61(7): e202115979, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34854182

RESUMO

Synthetic innovation for constructing sophisticated nanographenes is of fundamental significance for a variety of advanced applications. Herein, we report a distinctive method to prepare π-extended chiral nanographenes with 29 benzenoid rings and two helical breaches from a highly crowded perylene-cored oligoarylene precursor. Under Scholl's conditions, the reaction predominantly involves the regioselective and sequential cyclization in the peri- and bay regions of the perylene core, and the complanation of the 1-phenyl[5]helicene intermediate module via 1,2-phenyl migration. The resulting chiral nanographenes are configurationally stable at 180 °C due to the high diastereomerization barriers of ca. 45 kcal mol-1 . These molecules also possess globally delocalized π-systems with low HOMO/LUMO gaps, leading to nearly panchromatic absorption, intensive electronic circular dichroism signals and deep-red circularly polarized luminescence.

9.
J Am Chem Soc ; 142(38): 16167-16172, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32893619

RESUMO

Symmetry breaking in the self-assembly of achiral constituents is of vital importance for the origin of molecular homochirality and developing advanced chiral materials. Here, we report a unique mode of spontaneous symmetry breaking in the aggregates of aza[4]helicenes with an achiral vibrating helical conjugated structure. The achiral molecules initially form clustered aggregates with a slight chiral bias of the P and M isomers, and subsequently the chiral imbalance is amplified by the conversion of the P and M conformations to favor a more thermodynamic stable π-π stacking (from PM to PP or MM stacking). The dynamical P/M transformation not only promotes the evolution of optical activity following the initial spontaneous symmetry breaking but also favors the healing of chirality after the majority is eliminated by heating. Notably, the aggregates reveal prominent circularly polarized luminescence with the absolute dissymmetry factor approaching 0.01. This work provides additional insights into the pathway of chiral symmetry breaking and illustrates a unique route to develop optically active materials from achiral helical molecules.


Assuntos
Compostos Aza/química , Estrutura Molecular , Tamanho da Partícula , Estereoisomerismo , Temperatura , Vibração
10.
Int J Mol Sci ; 20(8)2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022934

RESUMO

Chiral recognition among helical molecules is of essential importance in many chemical and biochemical processes. The complexity necessitates investigating manageable model systems for unveiling the fundamental principles of chiral recognition at the molecular level. Here, we reported chiral recognition in the self-assembly of enantiopure and racemic hexahelicene on a Au(111) surface. Combing scanning tunneling microscopy (STM) and atomic force microscopy (AFM) measurements, the asymmetric heterochiral trimers were observed as a new type of building block in racemic helicene self-assembly on Au(111). The intermolecular recognition of the heterochiral trimer was investigated upon manual separation so that the absolute configuration of each helicene molecule was unambiguously determined one by one, thus confirming that the trimer was "2+1" in handedness. These heterochiral trimers showed strong stability upon different coverages, which was also supported by theoretical calculations. Our results provide valuable insights for understanding the intermolecular recognition of helical molecules.


Assuntos
Compostos Policíclicos/química , Dimerização , Ouro/química , Microscopia de Força Atômica , Microscopia de Tunelamento , Modelos Moleculares , Estereoisomerismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA