Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638572

RESUMO

Spinal muscular atrophy (SMA) is caused by homozygous survival of motor neurons 1 (SMN1) gene deletion, leaving a duplicate gene, SMN2, as the sole source of SMN protein. However, a defect in SMN2 splicing, involving exon 7 skipping, results in a low level of functional SMN protein. Therefore, the upregulation of SMN protein expression from the SMN2 gene is generally considered to be one of the best therapeutic strategies to treat SMA. Most of the SMA drug discovery is based on synthetic compounds, and very few natural compounds have been explored thus far. Here, we performed an unbiased mechanism-independent and image-based screen of a library of microbial metabolites in SMA fibroblasts using an SMN-specific immunoassay. In doing so, we identified brefeldin A (BFA), a well-known inhibitor of ER-Golgi protein trafficking, as a strong inducer of SMN protein. The profound increase in SMN protein was attributed to, in part, the rescue of the SMN2 pre-mRNA splicing defect. Intriguingly, BFA increased the intracellular calcium concentration, and the BFA-induced exon 7 inclusion of SMN2 splicing, was abrogated by the depletion of intracellular calcium and by the pharmacological inhibition of calcium/calmodulin-dependent kinases (CaMKs). Moreover, BFA considerably reduced the expression of Tra2-ß and SRSF9 proteins in SMA fibroblasts and enhanced the binding of PSF and hnRNP M to an exonic splicing enhancer (ESE) of exon 7. Together, our results demonstrate a significant role for calcium and its signaling on the regulation of SMN splicing, probably through modulating the expression/activity of splicing factors.


Assuntos
Sinalização do Cálcio/genética , Expressão Gênica/genética , Neurônios Motores/fisiologia , Linhagem Celular , Retículo Endoplasmático/genética , Retículo Endoplasmático/fisiologia , Éxons/genética , Fibroblastos/fisiologia , Complexo de Golgi/genética , Complexo de Golgi/fisiologia , Células HEK293 , Humanos , Atrofia Muscular Espinal/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia , Splicing de RNA/genética , RNA Mensageiro/genética , Proteínas do Complexo SMN/genética
2.
Bioorg Med Chem ; 27(13): 2923-2934, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31147141

RESUMO

Indirubin-based compounds affect diverse biological processes, such as inflammation and angiogenesis. In this study, we tested a novel indirubin derivative, LDD-1819 (2-((((2Z,3E)-5-hydroxy-5'-nitro-2'-oxo-[2,3'-biindolinylidene]-3-ylidene)amino)oxy)ethan-1-aminium chloride) for two major biological activities: cell plasticity and anti-cancer activity. Biological assays indicated that LDD-1819 induced somatic cell plasticity. LDD-1819 potentiated myoblast reprogramming into osteogenic cells and fibroblast reprogramming into adipogenic cells. Interestingly, in an assay of skeletal muscle dedifferentiation, LDD-1819 induced human muscle cellularization and blocked residual proliferative activity to produce a population of mononuclear refractory cells, which is also observed in the early stages of limb regeneration in urodele amphibians. In cancer cell lines, LDD-1819 treatment inhibited cell invasion and selectively induced apoptosis compared to normal cells. In an animal tumor xenograft model, LDD-1819 reduced human cancer cell metastasis in vivo at doses that did not produce toxicity. Biochemical assays showed that LDD-1819 possessed inhibitory activity against glycogen synthase kinase-3ß, which is linked to cell plasticity, and aurora kinase, which regulates carcinogenesis. These results indicate that novel indirubin derivative LDD-1819 is a dual inhibitor of glycogen synthase kinase-3ß and aurora A kinase, and has potential for development as an anti-cancer drug or as a reprogramming agent for cell-therapy based approaches to treat degenerative diseases.


Assuntos
Carcinogênese/efeitos dos fármacos , Plasticidade Celular/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia
3.
Biochem Biophys Res Commun ; 506(3): 703-708, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30376989

RESUMO

Alternative splicing of exon 6 in Fas pre-mRNA generates a membrane bound pro-apoptotic isoform or soluble anti-apoptotic isoform. SRSF4 is a member of Arginine-Serine rich (SR) protein family. Here we demonstrate that increased SRSF4 expression stimulates exon 6 inclusion, and that reduced SRSF4 expression promotes exon 6 exclusion. We also show that weaker but not stronger 5' splice-site strength of exon 6 abolishes the SRSF4 effects on exon 6 splicing. Furthermore, we identified a novel enhancer on exon 6, on which SRSF4 interacts functionally and physically. Our results illustrate a novel regulatory mechanism of Fas pre-mRNA splicing.


Assuntos
Elementos Facilitadores Genéticos/genética , Éxons/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Receptor fas/genética , Sequência de Bases , Regulação da Expressão Gênica , Células HCT116 , Humanos , Ligação Proteica/genética , Precursores de RNA/genética , Sítios de Splice de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor fas/metabolismo
4.
Biochem Biophys Res Commun ; 507(1-4): 383-388, 2018 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-30446220

RESUMO

The eukaryotic primase/polymerase complex synthesizes approximately 107 primers, one per Okazaki fragment, during the replication of mammalian chromosomes, which contain 109 base pairs. Primase catalyzes the synthesis of a short RNA segment to a single-stranded DNA template. Primase is important in DNA replication because no known replicative DNA polymerases can initiate the synthesis of a DNA strand without an initial RNA primer. The primase subcomplex is composed of a small catalytic subunit (p49), and a large accessory subunit (p58). Priming mechanisms remain poorly understood, although large numbers of structures of archaeal and eukaryotic p49 and/or p58 as well as structures of bacterial enzymes have been determined. In this study, we determined the structure of human p49 at 2.2 Šresolution with citrate in its inactive forms. Dibasic citrate was bound at the nucleotide triphosphate (NTP) ß, γ-phosphate binding site through nine hydrogen bonds. We also measured the dissociation constant of citrate and NTPs. We further demonstrated that the p49 activity is regulated by pH and citrate, which was not previously recognized as a key regulator of DNA replication. We propose that the citrate inhibits the primase and regulates DNA replication at the replication fork.


Assuntos
Ácido Cítrico/farmacologia , DNA Primase/antagonistas & inibidores , DNA Primase/química , Inibidores Enzimáticos/farmacologia , Ânions , Calorimetria , Domínio Catalítico , Ácido Cítrico/química , Cristalografia por Raios X , DNA Primase/metabolismo , Primers do DNA/metabolismo , Inibidores Enzimáticos/química , Humanos , Nucleotídeos/metabolismo
5.
Proc Natl Acad Sci U S A ; 112(32): 9926-31, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216990

RESUMO

U2 snRNP auxiliary factor 65 kDa (U2AF(65)) is a general splicing factor that contacts polypyrimidine (Py) tract and promotes prespliceosome assembly. In this report, we show that U2AF(65) stimulates alternative exon skipping in spinal muscular atrophy (SMA)-related survival motor neuron (SMN) pre-mRNA. A stronger 5' splice-site mutation of alternative exon abolishes the stimulatory effects of U2AF(65). U2AF(65) overexpression promotes its own binding only on the weaker, not the stronger, Py tract. We further demonstrate that U2AF(65) inhibits splicing of flanking introns of alternative exon in both three-exon and two-exon contexts. Similar U2AF(65) effects were observed in Fas (Apo-1/CD95) pre-mRNA. Strikingly, we demonstrate that U2AF(65) even inhibits general splicing of adenovirus major late (Ad ML) or ß-globin pre-mRNA. Thus, we conclude that U2AF(65) possesses a splicing Inhibitory function that leads to alternative exon skipping.


Assuntos
Processamento Alternativo/genética , Éxons/genética , Proteínas Nucleares/genética , Ribonucleoproteínas/genética , Sequência de Bases , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Íntrons/genética , Dados de Sequência Molecular , Proteínas Nucleares/química , Ligação Proteica , Estrutura Terciária de Proteína , Precursores de RNA/genética , Precursores de RNA/metabolismo , Sítios de Splice de RNA/genética , Ribonucleoproteínas/química , Proteínas do Complexo SMN/genética , Fator de Processamento U2AF , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Proteínas Virais/genética , Globinas beta/genética , Proteínas tau/genética
6.
Genes Dev ; 24(21): 2389-94, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21041408

RESUMO

The U2AF35-related protein Urp has been implicated previously in splicing of the major class of U2-type introns. Here we show that Urp is also required for splicing of the minor class of U12-type introns. Urp is recruited in an ATP-dependent fashion to the U12-type intron 3' splice site, where it promotes formation of spliceosomal complexes. Remarkably, Urp also contacts the 3' splice site of a U2-type intron, but in this case is specifically required for the second step of splicing. Thus, through recognition of a common splicing element, Urp facilitates distinct steps of U2- and U12-type intron splicing.


Assuntos
Íntrons/genética , Proteínas Nucleares/metabolismo , Sítios de Splice de RNA/genética , Splicing de RNA , RNA Nuclear Pequeno/genética , Ribonucleoproteínas/metabolismo , Sequência de Aminoácidos , Animais , Células HeLa , Humanos , Immunoblotting , Dados de Sequência Molecular , Proteínas Nucleares/genética , Filogenia , Interferência de RNA , Ribonucleoproteínas/genética , Spliceossomos/metabolismo , Fator de Processamento U2AF
7.
Biochim Biophys Acta ; 1849(6): 743-50, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25623890

RESUMO

CD44 is a complex cell adhesion molecule that mediates communication and adhesion between adjacent cells as well as between cells and the extracellular matrix. CD44 pre-mRNA produces various mRNA isoforms through alternative splicing of 20 exons, among which exons 1-5 (C1-C5) and 16-20 (C6-C10) are constant exons, whereas exons 6-15 (V1-V10) are variant exons. CD44 V10 exon has important roles in breast tumor progression and Hodgkin lymphoma. Here we show that increased expression of hnRNP L inhibits V10 exon splicing of CD44 pre-mRNA, whereas reduced expression of hnRNP L promotes V10 exon splicing. In addition, hnRNP L also promotes V10 splicing of endogenous CD44 pre-mRNA. Through mutation analysis, we demonstrate that the effects of hnRNP L on V10 splicing are abolished when the CA-rich sequence on the upstream intron of V10 exon is disrupted. However, hnRNP L effects are stronger if more CA-repeats are provided. Furthermore, we show that hnRNP L directly contacts the CA-rich sequence. Importantly, we provide evidences that hnRNP L inhibits U2AF65 binding on the upstream Py tract of V10 exon. Our results reveal that hnRNP L is a new regulator for CD44 V10 exon splicing.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo L/biossíntese , Receptores de Hialuronatos/genética , Íntrons/genética , Splicing de RNA/genética , Adesão Celular/genética , Éxons/genética , Regulação da Expressão Gênica , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas/metabolismo , Fator de Processamento U2AF
8.
RNA ; 20(4): 440-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24572809

RESUMO

The mouse immunoglobulin (IgM) pre-mRNA contains a splicing inhibitor that bears multiple binding sites for the splicing repressor polypyrimidine tract binding protein (PTB). Here we show that the inhibitor directs assembly of an ATP-dependent complex that contains PTB and U1 and U2 small nuclear RNAs (snRNAs). Unexpectedly, although U2 snRNA is present in the inhibitor complex, it is not base-paired to the branch point. We present evidence that inhibitor-bound PTB contacts U2 snRNA to promote base-pairing to an adjacent branch point-like sequence within the inhibitor, thereby preventing the U2 snRNA-branch point interaction and resulting in splicing repression. Our studies reveal a novel mechanism by which PTB represses splicing.


Assuntos
Pareamento de Bases/genética , Imunoglobulina M/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Precursores de RNA/genética , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Nuclear Pequeno/genética , Trifosfato de Adenosina/farmacologia , Animais , Sequência de Bases , Sítios de Ligação , Northern Blotting , Reagentes de Ligações Cruzadas/farmacologia , Éxons/genética , Imunoprecipitação , Camundongos , Dados de Sequência Molecular , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/metabolismo , Spliceossomos/genética
9.
Biochim Biophys Acta ; 1839(4): 306-15, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24533984

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive genetic disease, which causes death of motor neurons in the anterior horn of the spinal cord. Genetic cause of SMA is the deletion or mutation of SMN1 gene, which encodes the SMN protein. Although SMA patients include SMN2 gene, a duplicate of SMN1 gene, predominant production of exon 7 skipped isoform from SMN2 pre-mRNA, fails to rescue SMA patients. Here we show that hnRNP M, a member of hnRNP protein family, when knocked down, promotes exon 7 skipping of both SMN2 and SMN1 pre-mRNA. By contrast, overexpression of hnRNP M promotes exon 7 inclusion of both SMN2 and SMN1 pre-mRNA. Significantly, hnRNP M promotes exon 7 inclusion in SMA patient cells. Thus, we conclude that hnRNP M promotes exon 7 inclusion of both SMN1 and SMN2 pre-mRNA. We also demonstrate that hnRNP M contacts an enhancer on exon 7, which was previously shown to provide binding site for tra2ß. We present evidence that hnRNP M and tra2ß contact overlapped sequence on exon 7 but with slightly different RNA sequence requirements. In addition, hnRNP M promotes U2AF65 recruitment on the flanking intron of exon 7. We conclude that hnRNP M promotes exon 7 inclusion of SMN1 and SMN2 pre-mRNA through targeting an enhancer on exon 7 through recruiting U2AF65. Our results provide a clue that hnRNP M is a potential therapeutic target for SMA.


Assuntos
Elementos Facilitadores Genéticos/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/metabolismo , Atrofia Muscular Espinal/genética , Células do Corno Anterior/metabolismo , Células do Corno Anterior/patologia , Técnicas de Cultura de Células , Éxons/genética , Regulação da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/genética , Terapia de Alvo Molecular , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/etiologia , Atrofia Muscular Espinal/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Fatores de Processamento de Serina-Arginina , Medula Espinal/metabolismo , Medula Espinal/patologia , Fator de Processamento U2AF , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
10.
Biochim Biophys Acta ; 1839(6): 517-25, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24632473

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive genetic disease and a leading cause of infant mortality. Deletions or mutations of SMN1 cause SMA, a gene that encodes a SMN protein. SMN is important for the assembly of Sm proteins onto UsnRNA to UsnRNP. SMN has also been suggested to direct axonal transport of ß-actin mRNA in neurons. Humans contain a second SMN gene called SMN2 thus SMA patients produce some SMN but not with sufficient levels. The majority of SMN2 mRNA does not include exon 7. Here we show that increased expression of PSF promotes inclusion of exon 7 in the SMN2 whereas reduced expression of PSF promotes exon 7 skipping. In addition, we present evidence showing that PSF interacts with the GAAGGA enhancer in exon 7. We also demonstrate that a mutation in this enhancer abolishes the effects of PSF on exon 7 splicing. Furthermore we show that the RNA target sequences of PSF and tra2ß in exon 7 are partially overlapped. These results lead us to conclude that PSF interacts with an enhancer in exon 7 to promote exon 7 splicing of SMN2 pre-mRNA.


Assuntos
Éxons/genética , Regulação Neoplásica da Expressão Gênica , Precursores de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Western Blotting , Primers do DNA/química , Primers do DNA/genética , Humanos , Luciferases/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Fator de Processamento Associado a PTB , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Células Tumorais Cultivadas
11.
Biochim Biophys Acta ; 1839(11): 1132-40, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25220236

RESUMO

The product of proto-oncogene Ron is a human receptor for the macrophage-stimulating protein (MSP). Upon activation, Ron is able to induce cell dissociation, migration and matrix invasion. Exon 11 skipping of Ron pre-mRNA produces Ron△165 protein that is constitutively active even in the absence of its ligand. Here we show that knockdown of SRSF2 promotes the decrease of exon 11 inclusion, whereas overexpression of SRSF2 promotes exon 11 inclusion. We demonstrate that SRSF2 promotes exon 11 inclusion through splicing and transcription procedure. We also present evidence that reduced expression of SRSF2 induces a decrease in the splicing of both introns 10 and 11; by contrast, overexpression of SRSF2 induces an increase in the splicing of introns 10 and 11. Through mutation analysis, we show that SRSF2 functionally targets and physically interacts with CGAG sequence on exon 11. In addition, we reveal that the weak strength of splice sites of exon 11 is not required for the function of SRSF2 on the splicing of Ron exon 11. Our results indicate that SRSF2 promotes exon 11 inclusion of Ron proto-oncogene through targeting exon 11. Our study provides a novel mechanism by which Ron is expressed.


Assuntos
Proteínas Nucleares/fisiologia , Splicing de RNA , Receptores Proteína Tirosina Quinases/genética , Ribonucleoproteínas/fisiologia , Transcrição Gênica , Células Cultivadas , Éxons/genética , Células HeLa , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Proto-Oncogene Mas , Proto-Oncogenes/genética , Receptores Proteína Tirosina Quinases/metabolismo , Fatores de Processamento de Serina-Arginina
12.
Biochim Biophys Acta ; 1839(1): 25-32, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24321384

RESUMO

Alternative splicing plays an important role in gene expression by producing different proteins from a gene. Caspase-2 pre-mRNA produces anti-apoptotic Casp-2S and pro-apoptotic Casp-2L proteins through exon 9 inclusion or skipping. However, the molecular mechanisms of exon 9 splicing are not well understood. Here we show that knockdown of SRSF3 (also known as SRp20) with siRNA induced significant increase of endogenous exon 9 inclusion. In addition, overexpression of SRSF3 promoted exon 9 skipping. Thus we conclude that SRSF3 promotes exon 9 skipping. In order to understand the functional target of SRSF3 on caspase-2 pre-mRNA, we performed substitution and deletion mutagenesis on the potential SRSF3 binding sites that were predicted from previous reports. We demonstrate that substitution mutagenesis of the potential SRSF3 binding site on exon 8 severely disrupted the effects of SRSF3 on exon 9 skipping. Furthermore, with the approach of RNA pulldown and immunoblotting analysis we show that SRSF3 interacts with the potential SRSF3 binding RNA sequence on exon 8 but not with the mutant RNA sequence. In addition, we show that a deletion of 26nt RNA from 5' end of exon 8, a 33nt RNA from 3' end of exon 10 and a 2225nt RNA from intron 9 did not compromise the function of SRSF3 on exon 9 splicing. Therefore we conclude that SRSF3 promotes exon 9 skipping of caspase-2 pre-mRNA by interacting with exon 8. Our results reveal a novel mechanism of caspase-2 pre-mRNA splicing.


Assuntos
Processamento Alternativo/genética , Apoptose/genética , Caspase 2/genética , Proteínas de Ligação a RNA/genética , Sítios de Ligação/genética , Caspase 2/biossíntese , Éxons/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Mutagênese , Precursores de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Deleção de Sequência , Fatores de Processamento de Serina-Arginina
13.
J Nat Prod ; 77(11): 2389-96, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25397870

RESUMO

Quercetin is a plant-derived flavonoid and its cytotoxic properties have been widely reported. However, in nature, quercetin predominantly occurs as various glycosides. Thus far the cytotoxic activity of these glycosides has not been investigated to the same extent as quercetin, especially in animal models. In this study, the cytotoxic properties of quercetin (1), hyperoside (quercetin 3-O-galactoside, 2), isoquercitrin (quercetin 3-O-glucoside, 3), quercitrin (quercetin 3-O-rhamnoside, 4), and spiraeoside (quercetin 4'-O-glucoside, 5) were directly compared in vitro using assays of cancer cell viability. To further characterize the influence of glycosylation in vivo, a novel zebrafish-based assay was developed that allows the rapid and experimentally convenient visualization of glycoside cleavage in the digestive tract. This assay was correlated with a novel human tumor xenograft assay in the same animal model. The results showed that 3 is as effective as 1 at inhibiting cancer cell proliferation in vivo. Moreover, it was observed that 3 can be effectively deglycosylated in the digestive tract. Collectively, these results indicate that 3 is a very promising drug candidate for cancer therapy, because glycosylation confers advantageous pharmacological changes compared with the aglycone, 1. Importantly, the development of a novel and convenient fluorescence-based assay for monitoring deglycosylation in living vertebrates provides a valuable platform for determining the metabolic fate of naturally occurring glycosides.


Assuntos
Quercetina/farmacologia , Animais , Flavonoides/farmacologia , Glucosídeos , Glicosídeos/farmacologia , Glicosilação , Células HCT116 , Humanos , Estrutura Molecular , Quercetina/análogos & derivados , Relação Estrutura-Atividade , Vertebrados , Peixe-Zebra
14.
Neurol Sci ; 35(3): 391-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23955098

RESUMO

Spinal muscular atrophy (SMA) is caused by deletion of SMN1, one of the two SMN (Survival of Motor Neuron) genes. SMN2 is still present in SMA patients but its exon 7 is alternatively spliced. In this study, we took advantage of recent deposit of deep-sequencing datasets from a number of human tissues and examined the expression and splicing of SMN mRNA. We showed that SMN is slightly more abundantly expressed in the lungs and prostate. More interestingly, we found that the percentage of SMNΔ7 in lung and adipose tissue is significantly higher than in other tissues such as the testes, where almost no SMNΔ7 is expressed. Since SMN1 produces more than 95 % of full-length SMN RNA, it is likely that SMN2 has a higher skipping rate of exon 7 in adipose and lung tissue, leading to a higher ratio of SMNΔ7/SMN in these tissues. Given that many SMA patients die from respiratory failure, we speculate that higher skipping of exon 7 in the lungs may play a role in the progression of SMA.


Assuntos
Éxons/genética , Pulmão/metabolismo , RNA Mensageiro/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Tecido Adiposo/metabolismo , Adulto , Idoso , Processamento Alternativo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Arch Pharm (Weinheim) ; 347(11): 806-18, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25363410

RESUMO

Patient-derived cell transplantation is an attractive therapy for regenerative medicine. However, this requires effective strategies to reliably differentiate patient cells into clinically useful cell types. Herein, we report the discovery that 5-nitro-5'hydroxy-indirubin-3'oxime (5'-HNIO) is a novel inducer of cell transdifferentiation. 5'-HNIO induced muscle transdifferentiation into adipogenic and osteogenic cells. 5'-HNIO was shown to inhibit aurora kinase A, which is a known cell fate regulator. 5'-HNIO produced a favorable level of transdifferentiation compared to other aurora kinase inhibitors and induced transdifferentiation across cell lineage boundaries. Significantly, 5'-HNIO treatment produced direct transdifferentiation without up-regulating potentially oncogenic induced pluripotent stem cell (iPSC) reprogramming factors. Thus, our results demonstrate that 5'-HNIO is an attractive molecular tool for cell transdifferentiation and cell fate research.


Assuntos
Aurora Quinase A/antagonistas & inibidores , Transdiferenciação Celular/efeitos dos fármacos , Oximas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Animais , Aurora Quinase A/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Linhagem da Célula , Reprogramação Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica no Desenvolvimento , Indóis/química , Indóis/farmacologia , Indóis/toxicidade , Camundongos , Mioblastos Esqueléticos/efeitos dos fármacos , Mioblastos Esqueléticos/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Oximas/química , Oximas/toxicidade , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/toxicidade , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
16.
ScientificWorldJournal ; 2014: 917292, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24672392

RESUMO

Rice growth is greatly affected by temperature. To examine how temperature influences gene expression in rice on a genome-wide basis, we utilised recently compiled next-generation sequencing datasets and characterised a number of RNA-sequence transcriptome samples in rice seedling leaf blades at 25 °C and 30 °C. Our analysis indicated that 50.4% of all genes in the rice genome (28,296/56,143) were expressed in rice samples grown at 25 °C, whereas slightly fewer genes (50.2%; 28,189/56,143) were expressed in rice leaf blades grown at 30 °C. Among the genes that were expressed, approximately 3% were highly expressed, whereas approximately 65% had low levels of expression. Further examination demonstrated that 821 genes had a twofold or higher increase in expression and that 553 genes had a twofold or greater decrease in expression at 25 °C. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggested that the ribosome pathway and multiple metabolic pathways were upregulated at 25 °C. Based on these results, we deduced that gene expression at both transcriptional and translational levels was stimulated at 25 °C, perhaps in response to a suboptimal temperature condition. Finally, we observed that temperature markedly regulates several super-families of transcription factors, including bZIP, MYB, and WRKY.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/genética , Folhas de Planta/genética , Temperatura , Biologia Computacional , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Anotação de Sequência Molecular , Fatores de Transcrição/genética , Transcriptoma
17.
ScientificWorldJournal ; 2014: 617842, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24616638

RESUMO

Spinal muscular atrophy (SMA) is a human genetic disease which occurs because of the deletion or mutation of SMN1 gene. SMN1 gene encodes the SMN protein which plays a key role in spliceosome assembly. Although human patients contain SMN2, a duplicate of SMN1, splicing of SMN2 produces predominantly exon 7 skipped isoform. In order to understand the functions of splice site sequences on exon 7 and 8, we analyzed the effects of conserved splice site sequences on exon 7 skipping of SMN2 and SMN1 pre-mRNA. We show here that conserved 5' splice site sequence of exon 7 promoted splicing of nearby exons and subsequently reduced splicing of distant exons. However, to our surprise, conserved 3' splice site sequence of exon 7 and 8 did not promote splicing of nearby exons. By contrast, the mutation inhibited splicing of nearby exons and subsequently promoted splicing of distant exons. Our study shows that 3' splice sites of exon 7 and 8 contain enhancer for their splice site selection, in addition to providing cleavage sites.


Assuntos
Elementos Facilitadores Genéticos , Éxons , Atrofia Muscular Espinal/genética , Precursores de RNA , Sítios de Splice de RNA , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Sequência de Bases , Linhagem Celular , Sequência Conservada , Humanos , Proteína 1 de Sobrevivência do Neurônio Motor/genética
18.
Apoptosis ; 18(7): 825-35, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23430061

RESUMO

Fas is a transmembrane cell surface protein recognized by Fas ligand (FasL). When FasL binds to Fas, the target cells undergo apoptosis. A soluble Fas molecule that lacks the transmembrane domain is produced from skipping of exon 6 encoding this region in alternative splicing procedure. The soluble Fas molecule has the opposite function of intact Fas molecule, protecting cells from apoptosis. Here we show that knockdown of hnRNP A1 promotes exon 6 skipping of Fas pre-mRNA, whereas overexpression of hnRNP A1 reduces exon 6 skipping. Based on the bioinformatics approach, we have hypothesized that hnRNP A1 functions through interrupting 5' splice site selection of exon 5 by interacting with its potential binding site close to 5' splice site of exon 5. Consistent with our hypothesis, we demonstrate that mutations of the hnRNP A1 binding site on exon 5 disrupted the effects of hnRNP A1 on exon 6 inclusion. RNA pull-down assay and then western blot analysis with hnRNP A1 antibody prove that hnRNP A1 contacts the potential binding site RNA sequence on exon 5 but not the mutant sequence. In addition, we show that the mutation of 5' splice site on exon 5 to a less conserved sequence destructed the effects of hnRNP A1 on exon 6 inclusion. Therefore we conclude that hnRNP A1 interacts with exon 5 to promote distal exon 6 inclusion of Fas pre-mRNA. Our study reveals a novel alternative splicing mechanism of Fas pre-mRNA.


Assuntos
Apoptose/genética , Éxons , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Precursores de RNA/genética , Receptor fas/genética , Processamento Alternativo , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/antagonistas & inibidores , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Íntrons , Dados de Sequência Molecular , Ligação Proteica , Precursores de RNA/metabolismo , Sítios de Splice de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Homologia de Sequência do Ácido Nucleico , Receptor fas/metabolismo
19.
Biochem Biophys Res Commun ; 420(2): 467-72, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22440396

RESUMO

Alternative splicing plays an important role in the control of apoptosis. A number of genes related to apoptosis undergo alternative splicing. Among them, the apoptotic regulator Bcl-x produces two major isoforms, Bcl-xL and Bcl-xS, through the alternative splicing of exon 2 in its pre-mRNA. These isoforms have antagonistic function in apoptotic pathway; Bcl-xL is pro-apoptotic, while Bcl-xS is anti-apoptotic. The balanced ratio of two isoforms is important for cell survival. However, regulatory mechanisms of Bcl-x splicing remain poorly understood. Using a mini-gene system, we have found that a 105 nt exonic region (E3b) located within exon 3 affects exon 2 splicing in the Bcl-x gene. Further deletion and mutagenesis studies demonstrate that this 105 nt sequence contains various functional elements which promote skipping of exon 2b. One of these elements forms a stem-loop structure that stimulates skipping of exon 2b. Furthermore our results prove that the stem-loop structure functions as an enhancer in general pre-mRNA splicing. We conclude that we have identified a cis-regulatory element in exon 3 that affects splicing of exon 2 in the Bcl-x gene. This element could be potentially targeted to alter the ratio of Bcl-xL and Bcl-xS for treatment of tumors through an apoptotic pathway.


Assuntos
Processamento Alternativo , Precursores de RNA/genética , Elementos Reguladores de Transcrição , Proteína bcl-X/genética , Sequência de Bases , Éxons/genética , Células HeLa , Humanos , Análise de Sequência de DNA
20.
Biochem Biophys Res Commun ; 423(3): 531-5, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22683329

RESUMO

Spinal muscular atrophy is a genetic disease in which the SMN1 gene is deleted. The SMN2 gene exists in all of the patients. Alternative splicing of these two genes are different. More than 90% of exon 7 included form is produced from SMN1 pre-mRNA, whereas only ∼20% of exon 7 included form is produced from SMN2 pre-mRNA. Only exon 7 inclusion form produces functional protein. Exon 7 skipped SMN isoform is unstable. Here we constructed a GFP reporter system that recapitulates the alternative splicing of SMN1 and SMN2 pre-mRNA. We designed a system in which GFP protein is expressed only when exon 7 of is included in alternative splicing. The stable cell that expresses SMN1-GFP produces ∼4 times more GFP protein than the stable cell line that expresses SMN2-GFP; as demonstrated by microscopy, FACS analysis and immunoblotting. In addition the ratio of exon 7 inclusion and skipping of SMN1-GFP and SMN2-GFP pre-mRNA was similar to endogenous SMN1 and SMN2 pre-mRNA as shown in RT-PCR. Furthermore the knockdown with hnRNP A1 shRNA, a known protein which promotes exon 7 skipping of SMN2, induces exon 7 inclusion of exon 7 in SMN2-GFP pre-mRNA in SMN2-GFP cell line. We conclude that we have established the stable cell lines that recapitulate alternative splicing of the SMN1 and SMN2 genes. The stable cell line can be used to identify the trans-acting elements with siRNA.


Assuntos
Processamento Alternativo , Linhagem Celular , Elementos Reguladores de Transcrição , Éxons , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Atrofia Muscular Espinal/genética , Biossíntese de Proteínas , Precursores de RNA , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA