Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383768

RESUMO

White matter (WM) fiber tract differences are present in autism spectrum disorder (ASD) and could be important markers of behavior. One of the earliest phenotypic differences in ASD are language atypicalities. Although language has been linked to WM in typical development, no work has evaluated this association in early ASD. Participants came from the Infant Brain Imaging Study and included 321 infant siblings of children with ASD at high likelihood (HL) for developing ASD; 70 HL infants were later diagnosed with ASD (HL-ASD), and 251 HL infants were not diagnosed with ASD (HL-Neg). A control sample of 140 low likelihood infants not diagnosed with ASD (LL-Neg) were also included. Infants contributed expressive language, receptive language, and diffusion tensor imaging data at 6-, 12-, and 24 months. Mixed effects regression models were conducted to evaluate associations between WM and language trajectories. Trajectories of microstructural changes in the right arcuate fasciculus were associated with expressive language development. HL-ASD infants demonstrated a different developmental pattern compared to the HL-Neg and LL-Neg groups, wherein the HL-ASD group exhibited a positive association between WM fractional anisotropy and language whereas HL-Neg and LL-Neg groups showed weak or no association. No other fiber tracts demonstrated significant associations with language. In conclusion, results indicated arcuate fasciculus WM is linked to language in early toddlerhood for autistic toddlers, with the strongest associations emerging around 24 months. To our knowledge, this is the first study to evaluate associations between language and WM development during the pre-symptomatic period in ASD.

2.
Cereb Cortex ; 34(13): 30-39, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696599

RESUMO

The amygdala undergoes a period of overgrowth in the first year of life, resulting in enlarged volume by 12 months in infants later diagnosed with ASD. The overgrowth of the amygdala may have functional consequences during infancy. We investigated whether amygdala connectivity differs in 12-month-olds at high likelihood (HL) for ASD (defined by having an older sibling with autism), compared to those at low likelihood (LL). We examined seed-based connectivity of left and right amygdalae, hypothesizing that the HL and LL groups would differ in amygdala connectivity, especially with the visual cortex, based on our prior reports demonstrating that components of visual circuitry develop atypically and are linked to genetic liability for autism. We found that HL infants exhibited weaker connectivity between the right amygdala and the left visual cortex, as well as between the left amygdala and the right anterior cingulate, with evidence that these patterns occur in distinct subgroups of the HL sample. Amygdala connectivity strength with the visual cortex was related to motor and communication abilities among HL infants. Findings indicate that aberrant functional connectivity between the amygdala and visual regions is apparent in infants with genetic liability for ASD and may have implications for early differences in adaptive behaviors.


Assuntos
Tonsila do Cerebelo , Imageamento por Ressonância Magnética , Córtex Visual , Humanos , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiopatologia , Masculino , Feminino , Lactente , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiopatologia , Córtex Visual/crescimento & desenvolvimento , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Transtorno Autístico/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/diagnóstico por imagem , Predisposição Genética para Doença/genética
3.
Neuroimage ; 215: 116821, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32276067

RESUMO

The corpus callosum (CC) is the largest connective pathway in the human brain, linking cerebral hemispheres. There is longstanding debate in the scientific literature whether sex differences are evident in this structure, with many studies indicating the structure is larger in females. However, there are few data pertaining to this issue in infancy, during which time the most rapid developmental changes to the CC occur. In this study, we examined longitudinal brain imaging data collected from 104 infants at ages 6, 12, and 24 months. We identified sex differences in brain-size adjusted CC area and thickness characterized by a steeper rate of growth in males versus females from ages 6-24 months. In contrast to studies of older children and adults, CC size was larger for male compared to female infants. Based on diffusion tensor imaging data, we found that CC thickness is significantly associated with underlying microstructural organization. However, we observed no sex differences in the association between microstructure and thickness, suggesting that the role of factors such as axon density and/or myelination in determining CC size is generally equivalent between sexes. Finally, we found that CC length was negatively associated with nonverbal ability among females.


Assuntos
Desenvolvimento Infantil/fisiologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/crescimento & desenvolvimento , Imagem de Tensor de Difusão/métodos , Caracteres Sexuais , Pré-Escolar , Feminino , Humanos , Lactente , Estudos Longitudinais , Masculino , Imagem Multimodal/métodos
4.
Curr Opin Cardiol ; 34(1): 6-15, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30325814

RESUMO

PURPOSE OF REVIEW: This article uses three commonly encountered clinical scenarios to highlight the value of high-density mapping in the electrophysiology laboratory for the identification of the circuits and substrates during catheter ablation of complex arrhythmias. RECENT FINDINGS: High-density mapping gathered with a multielectrode catheter, with its smaller individual electrode size and closer interelectrode spacing, helps during ablation procedures in a number of ways. When high-density mapping is performed during tachycardia, the characterization of macro-reentrant circuits is better. When there is suspicion of a change in tachycardia during mapping or ablation, the threshold of remapping is significantly lower because of the speed of remapping. When mapping is done during sinus rhythm (substrate mapping), the identification of true scar is more accurate. Lastly, when extensive ablation of a critical isthmus fails to terminate a tachycardia, high-density mapping may reveal the gap(s) along the ablation line and may provide an alternative approach for ablation. SUMMARY: High-density mapping shows promises of improving procedural outcomes with shorter procedural times.


Assuntos
Ablação por Cateter , Eletrofisiologia , Taquicardia Ventricular , Mapeamento Potencial de Superfície Corporal , Cicatriz , Humanos
5.
Pacing Clin Electrophysiol ; 42(6): 694-704, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30912155

RESUMO

BACKGROUND: While several studies have evaluated predictors for atrial fibrillation (AF) recurrence following catheter ablation, there are limited data specific to cryoballoon ablation (CBA). METHODS: We analyzed a prospective registry of patients at a single institution who underwent CBA. Recurrence of AF (RAF) was defined as recurrence of AF by 12-month follow-up, excluding the 3-month blanking period. Univariate analysis was performed to evaluate predictors of RAF. Receiver operating characteristic analysis was used to compare and evaluate the performance of various risk scores for discriminating risk of RAF. RESULTS: There were 542 patients included in the analysis with mean age 61.3 ± 10.6 years, 67.9% male, and 51.6% paroxysmal AF (PAF). Overall, only left atrial diameter (LAD) > 40 mm and ERAF (early recurrence of AF within 0-3 month blanking period) were significant predictors of RAF. In the PAF specific subgroup, LAD > 40 mm, AF duration > 12 months, prior stroke or transient ischemic attack, ERAF, and having previously failed an antiarrhythmic drug were significant predictors of RAF. In persistent AF (PeAF) subgroup, obstructive sleep apnea (OSA) and ERAF were significant predictors of RAF. Out of clinical risk scores tested, BASEAF2 had the highest performance with area under the curve of 0.646 (95% confidence interval [0.548, 0.708]; P < .01). CONCLUSIONS: In this single-center retrospective study of CBA, we found only LAD > 40 mm and ERAF to be predictors of RAF. We identified OSA as a potential targetable risk factor in PeAF patients undergoing CBA. Out of risk scores tested for discriminating risk of RAF, BASEAF2 had the best performance.


Assuntos
Fibrilação Atrial/cirurgia , Criocirurgia/métodos , Idoso , Antiarrítmicos/administração & dosagem , Fibrilação Atrial/fisiopatologia , Feminino , Seguimentos , Humanos , Ataque Isquêmico Transitório/complicações , Masculino , Pessoa de Meia-Idade , Recidiva , Estudos Retrospectivos , Fatores de Risco , Apneia Obstrutiva do Sono/complicações , Acidente Vascular Cerebral/complicações , Fatores de Tempo
6.
Cereb Cortex ; 28(2): 750-763, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29186388

RESUMO

Infant gross motor development is vital to adaptive function and predictive of both cognitive outcomes and neurodevelopmental disorders. However, little is known about neural systems underlying the emergence of walking and general gross motor abilities. Using resting state fcMRI, we identified functional brain networks associated with walking and gross motor scores in a mixed cross-sectional and longitudinal cohort of infants at high and low risk for autism spectrum disorder, who represent a dimensionally distributed range of motor function. At age 12 months, functional connectivity of motor and default mode networks was correlated with walking, whereas dorsal attention and posterior cingulo-opercular networks were implicated at age 24 months. Analyses of general gross motor function also revealed involvement of motor and default mode networks at 12 and 24 months, with dorsal attention, cingulo-opercular, frontoparietal, and subcortical networks additionally implicated at 24 months. These findings suggest that changes in network-level brain-behavior relationships underlie the emergence and consolidation of walking and gross motor abilities in the toddler period. This initial description of network substrates of early gross motor development may inform hypotheses regarding neural systems contributing to typical and atypical motor outcomes, as well as neurodevelopmental disorders associated with motor dysfunction.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Desenvolvimento Infantil/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/crescimento & desenvolvimento , Caminhada/fisiologia , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/fisiopatologia , Pré-Escolar , Feminino , Humanos , Lactente , Estudos Longitudinais , Imageamento por Ressonância Magnética/tendências , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/crescimento & desenvolvimento
7.
J Neurosci ; 37(31): 7347-7361, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28663201

RESUMO

Angelman syndrome (AS) is a debilitating neurodevelopmental disorder caused by loss of function of the maternally inherited UBE3A allele. It is currently unclear how the consequences of this genetic insult unfold to impair neurodevelopment. We reasoned that by elucidating the basis of microcephaly in AS, a highly penetrant syndromic feature with early postnatal onset, we would gain new insights into the mechanisms by which maternal UBE3A loss derails neurotypical brain growth and function. Detailed anatomical analysis of both male and female maternal Ube3a-null mice reveals that microcephaly in the AS mouse model is primarily driven by deficits in the growth of white matter tracts, which by adulthood are characterized by densely packed axons of disproportionately small caliber. Our results implicate impaired axon growth in the pathogenesis of AS and identify noninvasive structural neuroimaging as a potentially valuable tool for gauging therapeutic efficacy in the disorder.SIGNIFICANCE STATEMENT People who maternally inherit a deletion or nonfunctional copy of the UBE3A gene develop Angelman syndrome (AS), a severe neurodevelopmental disorder. To better understand how loss of maternal UBE3A function derails brain development, we analyzed brain structure in a maternal Ube3a knock-out mouse model of AS. We report that the volume of white matter (WM) is disproportionately reduced in AS mice, indicating that deficits in WM development are a major factor underlying impaired brain growth and microcephaly in the disorder. Notably, we find that axons within the WM pathways of AS model mice are abnormally small in caliber. This defect is associated with slowed nerve conduction, which could contribute to behavioral deficits in AS, including motor dysfunction.


Assuntos
Síndrome de Angelman/patologia , Axônios/patologia , Microcefalia/patologia , Fibras Nervosas/patologia , Ubiquitina-Proteína Ligases/genética , Substância Branca/patologia , Síndrome de Angelman/fisiopatologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcefalia/fisiopatologia , Substância Branca/fisiopatologia
8.
Child Dev ; 89(2): e60-e73, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28295208

RESUMO

Children's early language environments are related to later development. Little is known about this association in siblings of children with autism spectrum disorder (ASD), who often experience language delays or have ASD. Fifty-nine 9-month-old infants at high or low familial risk for ASD contributed full-day in-home language recordings. High-risk infants produced more vocalizations than low-risk peers; conversational turns and adult words did not differ by group. Vocalization differences were driven by a subgroup of "hypervocal" infants. Despite more vocalizations overall, these infants engaged in less social babbling during a standardized clinic assessment, and they experienced fewer conversational turns relative to their rate of vocalizations. Two ways in which these individual and environmental differences may relate to subsequent development are discussed.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Desenvolvimento Infantil/fisiologia , Comportamento do Lactente/fisiologia , Irmãos , Comportamento Social , Comportamento Verbal/fisiologia , Feminino , Humanos , Lactente , Masculino , Risco , Processamento de Sinais Assistido por Computador
9.
Circ Res ; 114(6): 1004-21, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24625726

RESUMO

The autonomic nervous system plays an important role in the modulation of cardiac electrophysiology and arrhythmogenesis. Decades of research has contributed to a better understanding of the anatomy and physiology of cardiac autonomic nervous system and provided evidence supporting the relationship of autonomic tone to clinically significant arrhythmias. The mechanisms by which autonomic activation is arrhythmogenic or antiarrhythmic are complex and different for specific arrhythmias. In atrial fibrillation, simultaneous sympathetic and parasympathetic activations are the most common trigger. In contrast, in ventricular fibrillation in the setting of cardiac ischemia, sympathetic activation is proarrhythmic, whereas parasympathetic activation is antiarrhythmic. In inherited arrhythmia syndromes, sympathetic stimulation precipitates ventricular tachyarrhythmias and sudden cardiac death except in Brugada and J-wave syndromes where it can prevent them. The identification of specific autonomic triggers in different arrhythmias has brought the idea of modulating autonomic activities for both preventing and treating these arrhythmias. This has been achieved by either neural ablation or stimulation. Neural modulation as a treatment for arrhythmias has been well established in certain diseases, such as long QT syndrome. However, in most other arrhythmia diseases, it is still an emerging modality and under investigation. Recent preliminary trials have yielded encouraging results. Further larger-scale clinical studies are necessary before widespread application can be recommended.


Assuntos
Arritmias Cardíacas/fisiopatologia , Sistema Nervoso Autônomo/fisiopatologia , Terapia por Acupuntura , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/prevenção & controle , Arritmias Cardíacas/terapia , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/terapia , Fármacos Cardiovasculares/uso terapêutico , Ablação por Cateter , Criocirurgia , Morte Súbita Cardíaca , Modelos Animais de Doenças , Terapia por Estimulação Elétrica/métodos , Gânglios Autônomos/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca/fisiologia , Humanos , Bulbo/fisiopatologia , Modelos Cardiovasculares , Modelos Neurológicos , Medula Espinal , Nervo Vago/fisiopatologia , Estimulação do Nervo Vago , Fibrilação Ventricular/fisiopatologia , Fibrilação Ventricular/terapia
10.
Heart Fail Clin ; 11(2): 337-48, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25834979

RESUMO

"Heart failure is an increasingly prevalent disease with high mortality and public health burden. It is associated with autonomic imbalance characterized by sympathetic hyperactivity and parasympathetic hypoactivity. Evolving novel interventional and device-based therapies have sought to restore autonomic balance by neuromodulation. Results of preclinical animal studies and early clinical trials have demonstrated the safety and efficacy of these therapies in heart failure. This article discusses specific neuromodulatory treatment modalities individually-spinal cord stimulation, vagus nerve stimulation, baroreceptor activation therapy, and renal sympathetic nerve denervation."


Assuntos
Sistema Nervoso Autônomo , Insuficiência Cardíaca , Simpatectomia/métodos , Estimulação do Nervo Vago/métodos , Animais , Sistema Nervoso Autônomo/fisiopatologia , Sistema Nervoso Autônomo/cirurgia , Barorreflexo , Coração/inervação , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Humanos , Rim/inervação , Resultado do Tratamento
11.
P T ; 40(2): 123-32, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25673962

RESUMO

We present a case of a 36-year-old female who came into the emergency department with right-side abdominal pain. She went to the operating room for a diagnostic laparoscopy and appendectomy. She received intravenous (IV) acetaminophen every six hours both preoperatively and postoperatively for pain control. The patient's aspartate aminotransferase and alanine aminotransferase levels were elevated and peaked at 4,833 and 6,600 IU/L, respectively, from baselines of 14 and 15, respectively, while she was receiving 16 doses of IV acetaminophen. The patient was transferred to a regional liver transplant center for evaluation for a transplant. She was treated with IV N-acetylcysteine and discharged with a normal liver-function test without a transplant. This case report supports the possibility of hepatotoxicity associated with IV acetaminophen.

12.
Europace ; 16(7): 1083-91, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24469435

RESUMO

AIMS: We hypothesized that carvedilol can effectively suppress autonomic nerve activity (ANA) in ambulatory dogs during sinus rhythm and atrial fibrillation (AF), and that carvedilol withdrawal can lead to rebound elevation of ANA. Carvedilol is known to block pre-junctional ß2-adrenoceptor responsible for norepinephrine release. METHODS AND RESULTS: We implanted radiotransmitters to record stellate ganglion nerve activity (SGNA), vagal nerve activity (VNA), and superior left ganglionated plexi nerve activity (SLGPNA) in 12 ambulatory dogs. Carvedilol (12.5 mg orally twice a day) was given for 7 days during sinus rhythm (n = 8). Four of the eight dogs and an additional four dogs were paced into persistent AF. Carvedilol reduced heart rate [from 103 b.p.m. (95% confidence interval (CI), 100-105) to 100 b.p.m. (95% CI, 98-102), P = 0.044], suppressed integrated nerve activities (Int-NAs, SGNA by 17%, VNA by 19%, and SLGPNA by 12%; all P < 0.05 vs. the baseline), and significantly reduced the incidence (from 8 ± 6 to 3 ± 3 episodes/day, P < 0.05) and total duration (from 68 ± 64 to 16 ± 21 s/day, P < 0.05) of paroxysmal atrial tachycardia (PAT). Following the development of persistent AF, carvedilol loading was associated with AF termination in three dogs. In the remaining five dogs, Int-NAs were not significantly suppressed by carvedilol, but SGNA significantly increased by 16% after carvedilol withdrawal (P < 0.001). CONCLUSION: Carvedilol suppresses ANA and PAT in ambulatory dogs during sinus rhythm.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Antiarrítmicos/farmacologia , Fibrilação Atrial/tratamento farmacológico , Sistema Nervoso Autônomo/efeitos dos fármacos , Carbazóis/farmacologia , Propanolaminas/farmacologia , Administração Oral , Antagonistas de Receptores Adrenérgicos alfa 2/administração & dosagem , Animais , Antiarrítmicos/administração & dosagem , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/fisiopatologia , Sistema Nervoso Autônomo/fisiopatologia , Carbazóis/administração & dosagem , Carvedilol , Ritmo Circadiano , Modelos Animais de Doenças , Cães , Esquema de Medicação , Frequência Cardíaca/efeitos dos fármacos , Masculino , Propanolaminas/administração & dosagem , Taquicardia Supraventricular/fisiopatologia , Taquicardia Supraventricular/prevenção & controle , Fatores de Tempo
13.
Brain ; 136(Pt 9): 2825-35, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23838695

RESUMO

Prospective studies of infants at risk for autism spectrum disorder have provided important clues about the early behavioural symptoms of autism spectrum disorder. Diagnosis of autism spectrum disorder, however, is not currently made until at least 18 months of age. There is substantially less research on potential brain-based differences in the period between 6 and 12 months of age. Our objective in the current study was to use magnetic resonance imaging to identify any consistently observable brain anomalies in 6-9 month old infants who would later develop autism spectrum disorder. We conducted a prospective infant sibling study with longitudinal magnetic resonance imaging scans at three time points (6-9, 12-15, and 18-24 months of age), in conjunction with intensive behavioural assessments. Fifty-five infants (33 'high-risk' infants having an older sibling with autism spectrum disorder and 22 'low-risk' infants having no relatives with autism spectrum disorder) were imaged at 6-9 months; 43 of these (27 high-risk and 16 low-risk) were imaged at 12-15 months; and 42 (26 high-risk and 16 low-risk) were imaged again at 18-24 months. Infants were classified as meeting criteria for autism spectrum disorder, other developmental delays, or typical development at 24 months or later (mean age at outcome: 32.5 months). Compared with the other two groups, infants who developed autism spectrum disorder (n = 10) had significantly greater extra-axial fluid at 6-9 months, which persisted and remained elevated at 12-15 and 18-24 months. Extra-axial fluid is characterized by excessive cerebrospinal fluid in the subarachnoid space, particularly over the frontal lobes. The amount of extra-axial fluid detected as early as 6 months was predictive of more severe autism spectrum disorder symptoms at the time of outcome. Infants who developed autism spectrum disorder also had significantly larger total cerebral volumes at both 12-15 and 18-24 months of age. This is the first magnetic resonance imaging study to prospectively evaluate brain growth trajectories from infancy in children who develop autism spectrum disorder. The presence of excessive extra-axial fluid detected as early as 6 months and the lack of resolution by 24 months is a hitherto unreported brain anomaly in infants who later develop autism spectrum disorder. This is also the first magnetic resonance imaging evidence of brain enlargement in autism before age 2. These findings raise the potential for the use of structural magnetic resonance imaging to aid in the early detection of children at risk for autism spectrum disorder or other neurodevelopmental disorders.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Transtornos Globais do Desenvolvimento Infantil/líquido cefalorraquidiano , Transtornos Globais do Desenvolvimento Infantil/complicações , Deficiências do Desenvolvimento/patologia , Fatores Etários , Pré-Escolar , Deficiências do Desenvolvimento/líquido cefalorraquidiano , Feminino , Lateralidade Funcional , Cabeça/patologia , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Fatores de Tempo
14.
Res Sq ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39149488

RESUMO

Background Angelman syndrome (AS), a severe neurodevelopmental disorder resulting from the loss of the maternal UBE3A gene, is marked by changes in the brain's white matter (WM). The extent of WM abnormalities seems to correlate with the severity of clinical symptoms, but these deficits are still not well characterized or understood. This study provides the first large-scale measurement of WM volume reduction in children with AS. Furthermore, we probed the underlying neuropathology by examining the progression of myelination in an AS mouse model. Methods We conducted magnetic resonance imaging (MRI) on children with AS (n=32) and neurotypical controls (n=99) aged 0.5-12 years. In parallel, we examined myelination in postnatal Ube3a maternal-null mice ( Ube3a m-/p+ ; AS model), Ube3a paternal-null mice ( Ube3a m+/p- ), and wildtype controls ( Ube3a m+/p+ ) using immunohistochemistry, Western blotting, and electron microscopy. Results Our data revealed that AS individuals exhibit significant reductions in brain volume by ~1 year of age, with WM reduced by 26% and gray matter by 21% by 6-12 years of age-approximately twice the reductions observed in the adult AS mouse model. In our AS mouse model, we saw a global delay in the onset of myelination, which normalized within days (likely corresponding to months or years in human development). This myelination delay is caused by the loss of UBE3A in neurons rather than UBE3A haploinsufficiency in oligodendrocytes. Interestingly, ultrastructural analyses did not reveal any abnormalities in myelinated or unmyelinated axons. Limitations: It is difficult to extrapolate the timing and duration of the myelination delay observed in AS model mice to individuals with AS. Conclusions This study reveals WM deficits as a hallmark in children with AS, demonstrating for the first time that these deficits are already apparent at 1 year of age. Parallel studies in a mouse model of AS show that these deficits may be associated with delayed onset of myelination due to the loss of neuronal (but not glial) UBE3A. These findings emphasize the potential of WM as both a therapeutic target for interventions and a valuable biomarker for tracking the progression of AS and the effectiveness of potential treatments.

15.
J Neurodev Disord ; 16(1): 12, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509470

RESUMO

BACKGROUND: Specifying early developmental differences among neurodevelopmental disorders with distinct etiologies is critical to improving early identification and tailored intervention during the first years of life. Recent studies have uncovered important differences between infants with fragile X syndrome (FXS) and infants with familial history of autism spectrum disorder who go on to develop autism themselves (FH-ASD), including differences in brain development and behavior. Thus far, there have been no studies longitudinally investigating differential developmental skill profiles in FXS and FH-ASD infants. METHODS: The current study contrasted longitudinal trajectories of verbal (expressive and receptive language) and nonverbal (gross and fine motor, visual reception) skills in FXS and FH-ASD infants, compared to FH infants who did not develop ASD (FH-nonASD) and typically developing controls. RESULTS: Infants with FXS showed delays on a nonverbal composite compared to FH-ASD (as well as FH-nonASD and control) infants as early as 6 months of age. By 12 months an ordinal pattern of scores was established between groups on all domains tested, such that controls > FH-nonASD > FH-ASD > FXS. This pattern persisted through 24 months. Cognitive level differentially influenced developmental trajectories for FXS and FH-ASD. CONCLUSIONS: Our results demonstrate detectable group differences by 6 months between FXS and FH-ASD as well as differential trajectories on each domain throughout infancy. This work further highlights an earlier onset of global cognitive delays in FXS and, conversely, a protracted period of more slowly emerging delays in FH-ASD. Divergent neural and cognitive development in infancy between FXS and FH-ASD contributes to our understanding of important distinctions in the development and behavioral phenotype of these two groups.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Síndrome do Cromossomo X Frágil , Lactente , Humanos , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/psicologia , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/psicologia , Idioma , Cognição
16.
Dev Cogn Neurosci ; 65: 101333, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154378

RESUMO

Amygdala function is implicated in the pathogenesis of autism spectrum disorder (ASD) and anxiety. We investigated associations between early trajectories of amygdala growth and anxiety and ASD outcomes at school age in two longitudinal studies: high- and low-familial likelihood for ASD, Infant Brain Imaging Study (IBIS, n = 257) and typically developing (TD) community sample, Early Brain Development Study (EBDS, n = 158). Infants underwent MRI scanning at up to 3 timepoints from neonate to 24 months. Anxiety was assessed at 6-12 years. Linear multilevel modeling tested whether amygdala volume growth was associated with anxiety symptoms at school age. In the IBIS sample, children with higher anxiety showed accelerated amygdala growth from 6 to 24 months. ASD diagnosis and ASD familial likelihood were not significant predictors. In the EBDS sample, amygdala growth from birth to 24 months was associated with anxiety. More anxious children had smaller amygdala volume and slower rates of amygdala growth. We explore reasons for the contrasting results between high-familial likelihood for ASD and TD samples, grounding results in the broader literature of variable associations between early amygdala volume and later anxiety. Results have the potential to identify mechanisms linking early amygdala growth to later anxiety in certain groups.


Assuntos
Transtorno do Espectro Autista , Criança , Lactente , Recém-Nascido , Humanos , Ansiedade , Transtornos de Ansiedade , Encéfalo , Imageamento por Ressonância Magnética/métodos , Tonsila do Cerebelo
17.
Circ Res ; 108(8): 971-9, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21350217

RESUMO

RATIONALE: Fibrillation/defibrillation episodes in failing ventricles may be followed by action potential duration (APD) shortening and recurrent spontaneous ventricular fibrillation (SVF). OBJECTIVE: We hypothesized that activation of apamin-sensitive small-conductance Ca(2+)-activated K(+) (SK) channels is responsible for the postshock APD shortening in failing ventricles. METHODS AND RESULTS: A rabbit model of tachycardia-induced heart failure was used. Simultaneous optical mapping of intracellular Ca(2+) and membrane potential (V(m)) was performed in failing and nonfailing ventricles. Three failing ventricles developed SVF (SVF group); 9 did not (no-SVF group). None of the 10 nonfailing ventricles developed SVF. Increased pacing rate and duration augmented the magnitude of APD shortening. Apamin (1 µmol/L) eliminated recurrent SVF and increased postshock APD(80) in the SVF group from 126±5 to 153±4 ms (P<0.05) and from 147±2 to 162±3 ms (P<0.05) in the no-SVF group but did not change APD(80) in nonfailing group. Whole cell patch-clamp studies at 36°C showed that the apamin-sensitive K(+) current (I(KAS)) density was significantly larger in the failing than in the normal ventricular epicardial myocytes, and epicardial I(KAS) density was significantly higher than midmyocardial and endocardial myocytes. Steady-state Ca(2+) response of I(KAS) was leftward-shifted in the failing cells compared with the normal control cells, indicating increased Ca(2+) sensitivity of I(KAS) in failing ventricles. The K(d) was 232±5 nmol/L for failing myocytes and 553±78 nmol/L for normal myocytes (P=0.002). CONCLUSIONS: Heart failure heterogeneously increases the sensitivity of I(KAS) to intracellular Ca(2+), leading to upregulation of I(KAS), postshock APD shortening, and recurrent SVF.


Assuntos
Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/biossíntese , Fibrilação Ventricular/metabolismo , Animais , Apamina/uso terapêutico , Sinalização do Cálcio/fisiologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/prevenção & controle , Ventrículos do Coração/patologia , Coelhos , Prevenção Secundária , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia , Fibrilação Ventricular/tratamento farmacológico , Fibrilação Ventricular/prevenção & controle
18.
Child Adolesc Psychiatry Ment Health ; 17(1): 27, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36805686

RESUMO

BACKGROUND: The identification of reproducible subtypes within autistic populations is a priority research area in the context of neurodevelopment, to pave the way for identification of biomarkers and targeted treatment recommendations. Few previous studies have considered medical comorbidity alongside behavioural, cognitive, and psychiatric data in subgrouping analyses. This study sought to determine whether differing behavioural, cognitive, medical, and psychiatric profiles could be used to distinguish subgroups of children on the autism spectrum in the Australian Autism Biobank (AAB). METHODS: Latent profile analysis was used to identify subgroups of children on the autism spectrum within the AAB (n = 1151), utilising data on social communication profiles and restricted, repetitive, and stereotyped behaviours (RRBs), in addition to their cognitive, medical, and psychiatric profiles. RESULTS: Our study identified four subgroups of children on the autism spectrum with differing profiles of autism traits and associated comorbidities. Two subgroups had more severe clinical and cognitive phenotype, suggesting higher support needs. For the 'Higher Support Needs with Prominent Language and Cognitive Challenges' subgroup, social communication, language and cognitive challenges were prominent, with prominent sensory seeking behaviours. The 'Higher Support Needs with Prominent Medical and Psychiatric and Comorbidity' subgroup had the highest mean scores of challenges relating to social communication and RRBs, with the highest probability of medical and psychiatric comorbidity, and cognitive scores similar to the overall group mean. Individuals within the 'Moderate Support Needs with Emotional Challenges' subgroup, had moderate mean scores of core traits of autism, and the highest probability of depression and/or suicidality. A fourth subgroup contained individuals with fewer challenges across domains (the 'Fewer Support Needs Group'). LIMITATIONS: Data utilised to identify subgroups within this study was cross-sectional as longitudinal data was not available. CONCLUSIONS: Our findings support the holistic appraisal of support needs for children on the autism spectrum, with assessment of the impact of co-occurring medical and psychiatric conditions in addition to core autism traits, adaptive functioning, and cognitive functioning. Replication of our analysis in other cohorts of children on the autism spectrum is warranted, to assess whether the subgroup structure we identified is applicable in a broader context beyond our specific dataset.

19.
Shape Med Imaging (2023) ; 14350: 248-258, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38425723

RESUMO

In this study, we introduce a novel approach for the analysis and interpretation of 3D shapes, particularly applied in the context of neuroscientific research. Our method captures 2D perspectives from various vantage points of a 3D object. These perspectives are subsequently analyzed using 2D Convolutional Neural Networks (CNNs), uniquely modified with custom pooling mechanisms. We sought to assess the efficacy of our approach through a binary classification task involving subjects at high risk for Autism Spectrum Disorder (ASD). The task entailed differentiating between high-risk positive and high-risk negative ASD cases. To do this, we employed brain attributes like cortical thickness, surface area, and extra-axial cerebral spinal measurements. We then mapped these measurements onto the surface of a sphere and subsequently analyzed them via our bespoke method. One distinguishing feature of our method is the pooling of data from diverse views using our icosahedron convolution operator. This operator facilitates the efficient sharing of information between neighboring views. A significant contribution of our method is the generation of gradient-based explainability maps, which can be visualized on the brain surface. The insights derived from these explainability images align with prior research findings, particularly those detailing the brain regions typically impacted by ASD. Our innovative approach thereby substantiates the known understanding of this disorder while potentially unveiling novel areas of study.

20.
JAMA Netw Open ; 6(12): e2348341, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113043

RESUMO

Importance: Perivascular spaces (PVS) and cerebrospinal fluid (CSF) are essential components of the glymphatic system, regulating brain homeostasis and clearing neural waste throughout the lifespan. Enlarged PVS have been implicated in neurological disorders and sleep problems in adults, and excessive CSF volume has been reported in infants who develop autism. Enlarged PVS have not been sufficiently studied longitudinally in infancy or in relation to autism outcomes or CSF volume. Objective: To examine whether enlarged PVS are more prevalent in infants who develop autism compared with controls and whether they are associated with trajectories of extra-axial CSF volume (EA-CSF) and sleep problems in later childhood. Design, Setting, and Participants: This prospective, longitudinal cohort study used data from the Infant Brain Imaging Study. Magnetic resonance images were acquired at ages 6, 12, and 24 months (2007-2017), with sleep questionnaires performed between ages 7 and 12 years (starting in 2018). Data were collected at 4 sites in North Carolina, Missouri, Pennsylvania, and Washington. Data were analyzed from March 2021 through August 2022. Exposure: PVS (ie, fluid-filled channels that surround blood vessels in the brain) that are enlarged (ie, visible on magnetic resonance imaging). Main Outcomes and Measures: Outcomes of interest were enlarged PVS and EA-CSF volume from 6 to 24 months, autism diagnosis at 24 months, sleep problems between ages 7 and 12 years. Results: A total of 311 infants (197 [63.3%] male) were included: 47 infants at high familial likelihood for autism (ie, having an older sibling with autism) who were diagnosed with autism at age 24 months, 180 high likelihood infants not diagnosed with autism, and 84 low likelihood control infants not diagnosed with autism. Sleep measures at school-age were available for 109 participants. Of infants who developed autism, 21 (44.7%) had enlarged PVS at 24 months compared with 48 infants (26.7%) in the high likelihood but no autism diagnosis group (P = .02) and 22 infants in the control group (26.2%) (P = .03). Across all groups, enlarged PVS at 24 months was associated with greater EA-CSF volume from ages 6 to 24 months (ß = 4.64; 95% CI, 0.58-8.72; P = .002) and more frequent night wakings at school-age (F = 7.76; η2 = 0.08; P = .006). Conclusions and Relevance: These findings suggest that enlarged PVS emerged between ages 12 and 24 months in infants who developed autism. These results add to a growing body of evidence that, along with excessive CSF volume and sleep dysfunction, the glymphatic system could be dysregulated in infants who develop autism.


Assuntos
Transtorno Autístico , Lactente , Humanos , Masculino , Criança , Pré-Escolar , Feminino , Transtorno Autístico/diagnóstico por imagem , Estudos Longitudinais , Estudos Prospectivos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Sono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA