Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 627(8005): 839-846, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509363

RESUMO

The bone marrow adjusts blood cell production to meet physiological demands in response to insults. The spatial organization of normal and stress responses are unknown owing to the lack of methods to visualize most steps of blood production. Here we develop strategies to image multipotent haematopoiesis, erythropoiesis and lymphopoiesis in mice. We combine these with imaging of myelopoiesis1 to define the anatomy of normal and stress haematopoiesis. In the steady state, across the skeleton, single stem cells and multipotent progenitors distribute through the marrow enriched near megakaryocytes. Lineage-committed progenitors are recruited to blood vessels, where they contribute to lineage-specific microanatomical structures composed of progenitors and immature cells, which function as the production sites for each major blood lineage. This overall anatomy is resilient to insults, as it was maintained after haemorrhage, systemic bacterial infection and granulocyte colony-stimulating factor (G-CSF) treatment, and during ageing. Production sites enable haematopoietic plasticity as they differentially and selectively modulate their numbers and output in response to insults. We found that stress responses are variable across the skeleton: the tibia and the sternum respond in opposite ways to G-CSF, and the skull does not increase erythropoiesis after haemorrhage. Our studies enable in situ analyses of haematopoiesis, define the anatomy of normal and stress responses, identify discrete microanatomical production sites that confer plasticity to haematopoiesis, and uncover unprecedented heterogeneity of stress responses across the skeleton.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Estresse Fisiológico , Animais , Feminino , Masculino , Camundongos , Envelhecimento/fisiologia , Infecções Bacterianas/patologia , Infecções Bacterianas/fisiopatologia , Vasos Sanguíneos/citologia , Linhagem da Célula , Eritropoese , Fator Estimulador de Colônias de Granulócitos/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hemorragia/patologia , Hemorragia/fisiopatologia , Linfopoese , Megacariócitos/citologia , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Mielopoese , Crânio/irrigação sanguínea , Crânio/patologia , Crânio/fisiopatologia , Esterno/irrigação sanguínea , Esterno/citologia , Esterno/metabolismo , Estresse Fisiológico/fisiologia , Tíbia/irrigação sanguínea , Tíbia/citologia , Tíbia/metabolismo
2.
J Virol ; 98(6): e0043424, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38690875

RESUMO

The globally reemerging respiratory pathogen enterovirus D68 (EV-D68) is implicated in outbreaks of severe respiratory illness and associated with acute flaccid myelitis. However, there remains a lack of effective treatments for EV-D68 infection. In this work, we found that the host Toll-like receptor 7 (TLR7) proteins, which function as powerful innate immune sensors, were selectively elevated in expression in response to EV-D68 infection. Subsequently, we investigated the impact of Vesatolimod (GS-9620), a Toll-like receptor 7 agonist, on EV-D68 replication. Our findings revealed that EV-D68 infection resulted in increased mRNA levels of TLR7. Treatment with Vesatolimod significantly inhibited EV-D68 replication [half maximal effective concentration (EC50) = 0.1427 µM] without inducing significant cytotoxicity at virucidal concentrations. Although Vesatolimod exhibited limited impact on EV-D68 attachment, it suppressed RNA replication and viral protein synthesis after virus entry. Vesatolimod broadly inhibited the replication of circulating isolated strains of EV-D68. Furthermore, our findings demonstrated that treatment with Vesatolimod conferred resistance to both respiratory and neural cells against EV-D68 infection. Overall, these results present a promising strategy for drug development by pharmacologically activating TLR7 to initiate an antiviral state in EV-D68-infected cells selectively.IMPORTANCEConventional strategies for antiviral drug development primarily focus on directly targeting viral proteases or key components, as well as host proteins involved in viral replication. In this study, based on our intriguing discovery that enterovirus D68 (EV-D68) infection specifically upregulates the expression of immune sensor Toll-like receptor 7 (TLR7) protein, which is either absent or expressed at low levels in respiratory cells, we propose a potential antiviral approach utilizing TLR7 agonists to activate EV-D68-infected cells into an anti-viral defense state. Notably, our findings demonstrate that pharmacological activation of TLR7 effectively suppresses EV-D68 replication in respiratory tract cells through a TLR7/MyD88-dependent mechanism. This study not only presents a promising drug candidate and target against EV-D68 dissemination but also highlights the potential to exploit unique alterations in cellular innate immune responses induced by viral infections, selectively inducing a defensive state in infected cells while safeguarding uninfected normal cells from potential adverse effects associated with therapeutic interventions.


Assuntos
Antivirais , Enterovirus Humano D , Receptor 7 Toll-Like , Replicação Viral , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/metabolismo , Humanos , Replicação Viral/efeitos dos fármacos , Enterovirus Humano D/efeitos dos fármacos , Antivirais/farmacologia , Indóis/farmacologia , Infecções por Enterovirus/virologia , Imunidade Inata/efeitos dos fármacos , Linhagem Celular , Internalização do Vírus/efeitos dos fármacos , Pteridinas
3.
J Virol ; 98(2): e0190923, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289118

RESUMO

Pyroptosis, a pro-inflammatory programmed cell death, has been implicated in the pathogenesis of coronavirus disease 2019 and other viral diseases. Gasdermin family proteins (GSDMs), including GSDMD and GSDME, are key regulators of pyroptotic cell death. However, the mechanisms by which virus infection modulates pyroptosis remain unclear. Here, we employed a mCherry-GSDMD fluorescent reporter assay to screen for viral proteins that impede the localization and function of GSDMD in living cells. Our data indicated that the main protease NSP5 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) blocked GSDMD-mediated pyroptosis via cleaving residues Q29 and Q193 of GSDMD. While another SARS-CoV-2 protease, NSP3, cleaved GSDME at residue G370 but activated GSDME-mediated pyroptosis. Interestingly, respiratory enterovirus EV-D68-encoded proteases 3C and 2A also exhibit similar differential regulation on the functions of GSDMs by inactivating GSDMD but initiating GSDME-mediated pyroptosis. EV-D68 infection exerted oncolytic effects on human cancer cells by inducing pyroptotic cell death. Our findings provide insights into how respiratory viruses manipulate host cell pyroptosis and suggest potential targets for antiviral therapy as well as cancer treatment.IMPORTANCEPyroptosis plays a crucial role in the pathogenesis of coronavirus disease 2019, and comprehending its function may facilitate the development of novel therapeutic strategies. This study aims to explore how viral-encoded proteases modulate pyroptosis. We investigated the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and respiratory enterovirus D68 (EV-D68) proteases on host cell pyroptosis. We found that SARS-CoV-2-encoded proteases NSP5 and NSP3 inactivate gasdermin D (GSDMD) but initiate gasdermin E (GSDME)-mediated pyroptosis, respectively. We also discovered that another respiratory virus EV-D68 encodes two distinct proteases 2A and 3C that selectively trigger GSDME-mediated pyroptosis while suppressing the function of GSDMD. Based on these findings, we further noted that EV-D68 infection triggers pyroptosis and produces oncolytic effects in human carcinoma cells. Our study provides new insights into the molecular mechanisms underlying virus-modulated pyroptosis and identifies potential targets for the development of antiviral and cancer therapeutics.


Assuntos
Endopeptidases , Enterovirus Humano D , Interações entre Hospedeiro e Microrganismos , Vírus Oncolíticos , Piroptose , SARS-CoV-2 , Humanos , Linhagem Celular Tumoral , COVID-19/metabolismo , COVID-19/terapia , COVID-19/virologia , Endopeptidases/genética , Endopeptidases/metabolismo , Enterovirus Humano D/enzimologia , Enterovirus Humano D/genética , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Gasderminas/antagonistas & inibidores , Gasderminas/genética , Gasderminas/metabolismo , Terapia Viral Oncolítica , Vírus Oncolíticos/enzimologia , Vírus Oncolíticos/genética , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
J Sci Food Agric ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39118479

RESUMO

BACKGROUND: Sanqi, the root of Panax notoginseng, has long been recognized for its therapeutic effects on cardiovascular diseases. Saponins, including ginsenosides and notoginsenosides, are the main bioactive components of P. notoginseng. The biosynthesis of saponins is closely related to the defense responses orchestrated by endogenous hormones. RESULTS: To provide new insights into the underlying role of phytohormone jasmonic acid (JA) in the synthesis and regulation of saponins, we performed an ultra-performance liquid chromatography analysis of different tissues of P. notoginseng aged 2-4 years. Moreover, by combined evaluation of saponin content and transcriptome profiling of each tissue, the spatial and temporal distribution of saponins was analyzed. N notoginsenoside R1, ginsenoside Rb1 and ginsenoside Rd accumulated in the underground tissues, including the root, tuqi, fibril and rhizome. In agreement with this data, the corresponding genes of the endogenous hormone JAs, especially coronatine insensitive 1 (COI1) and myelocytomatosis proteins 2 (MYC2), were predominantly expressed in the underground tissues. The tissue- and age-specific distribution of saponins was consistent with the expression of genes involved in JA biosynthetic, metabolic and signaling pathways. CONCLUSION: The present study has revealed the temporal and spatial effects of endogenous phtohormones in the synthesis and regulation of notoginsenosides, which will provide a significant impact on improving the ecological planting technology, cultivating new high-quality varieties and protecting the rare resources of medicinal P. notoginseng. © 2024 Society of Chemical Industry.

5.
J Med Virol ; 95(1): e28135, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36085352

RESUMO

The ongoing pandemic of severe acute respiratory coronavirus 2 (SARS-CoV-2) is causing a devastating impact on public health worldwide. However, details concerning the profound impact of SARS-CoV-2 on host cells remain elusive. Here, we investigated the effects of SARS-CoV-2-encoded viral proteins on the intracellular activity of long interspersed element 1 (L1) retrotransposons using well-established reporter systems. Several nonstructural or accessory proteins (Nsps) of SARS-CoV-2 (i.e., Nsp1, Nsp3, Nsp5, and Nsp14) significantly suppress human L1 mobility, and these viral L1 inhibitors generate a complex network that modulates L1 transposition. Specifically, Nsp1 and Nsp14 inhibit the intracellular accumulation of L1 open reading frame proteins (ORF1p), whereas Nsp3, Nsp5, and Nsp14 repress the reverse transcriptase activity of L1 ORF2p. Given recent findings concerning the roles of L1 in antiviral immune activation and host genome instability, the anti-L1 activities mediated by SARS-CoV-2-encoded inhibitors suggest that SARS-CoV-2 employs different strategies to optimize the host genetic environment.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/genética , Elementos Nucleotídeos Longos e Dispersos , Proteínas Virais/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
6.
Angew Chem Int Ed Engl ; 62(48): e202313429, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37840440

RESUMO

The oxidosqualene cyclase (OSC) catalyzed cyclization of the linear substrate (3S)-2,3-oxidosqualene to form diverse pentacyclic triterpenoid (PT) skeletons is one of the most complex reactions in nature. Friedelin has a unique PT skeleton involving a fascinating nine-step cation shuttle run (CSR) cascade rearrangement reaction, in which the carbocation formed at C2 moves to the other side of the skeleton, runs back to C3 to yield a friedelin cation, which is finally deprotonated. However, as crystal structure data of plant OSCs are lacking, it remains unknown why the CSR cascade reactions occur in friedelin biosynthesis, as does the exact catalytic mechanism of the CSR. In this study, we determined the first cryogenic electron microscopy structure of a plant OSC, friedelin synthase, from Tripterygium wilfordii Hook. f (TwOSC). We also performed quantum mechanics/molecular mechanics simulations to reveal the energy profile for the CSR cascade reaction and identify key residues crucial for PT skeleton formation. Furthermore, we semirationally designed two TwOSC mutants, which significantly improved the yields of friedelin and ß-amyrin, respectively.


Assuntos
Transferases Intramoleculares , Triterpenos , Triterpenos/química , Transferases Intramoleculares/genética , Catálise , Cátions
7.
Nat Prod Rep ; 39(9): 1856-1875, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35913409

RESUMO

Covering: up to 2022Podophyllotoxin (PTOX, 1), a kind of aryltetralin-type lignan, was first discovered in the plant Podophyllum peltatum and its structure was clarified by W. Borsche and J. Niemann in 1932. Due to its potent anti-cancer and anti-viral activities, it is considered one of the molecules most likely to be developed into modern drugs. With the increasing market demand and insufficient storage of natural resources, it is crucial to expand the sources of PTOXs. The original extraction method from plants has gradually failed to meet the requirements, and the biosynthesis and total synthesis have become the forward-looking alternatives. As key enzymes in the biosynthetic pathway of PTOXs and their catalytic mechanisms being constantly revealed, it is possible to realize the heterogeneous biosynthesis of PTOXs in the future. Chemical and chemoenzymatic synthesis also provide schemes for strictly controlling the asymmetric configuration of the tetracyclic core. Currently, the pharmacological activities of some PTOX derivatives have been extensively studied, laying the foundation for clinical candidate drugs. This review focuses primarily on the latest research progress in the biosynthesis, total synthesis, and pharmacological activities of PTOX and its derivatives, providing a more comprehensive understanding of these widely used compounds and supporting the future search for clinical applications.


Assuntos
Lignanas , Podofilotoxina , Vias Biossintéticas , Catálise , Podofilotoxina/farmacologia
8.
Ann Rheum Dis ; 81(1): 87-99, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34706873

RESUMO

OBJECTIVE: The aim of the study was to investigate the role and regulatory mechanisms of fibroblast-like synoviocytes (FLSs) and their senescence in the progression of osteoarthritis (OA). METHODS: Synovial tissues from normal patients and patients with OA were collected. Synovium FLS senescence was analysed by immunofluorescence and western blotting. The role of methyltransferase-like 3 (METTL3) in autophagy regulation was explored using N6-methyladenosine (m6A)-methylated RNA and RNA immunoprecipitation assays. Mice subjected to destabilisation of the medial meniscus (DMM) surgery were intra-articularly injected with or without pAAV9 loaded with small interfering RNA (siRNA) targeting METTL3. Histological analysis was performed to determine cartilage damage. RESULTS: Senescent FLSs were markedly increased with the progression of OA in patients and mouse models. We determined that impaired autophagy occurred in OA-FLS, resulting in the upregulation of senescence-associated secretory phenotype (SASP). Re-establishment of autophagy reversed the senescent phenotype by suppressing GATA4. Further, we observed for the first time that excessive m6A modification negatively regulated autophagy in OA-FLS. Mechanistically, METTL3-mediated m6A modification decreased the expression of autophagy-related 7, an E-1 enzyme crucial for the formation of autophagosomes, by attenuating its RNA stability. Silencing METTL3 enhanced autophagic flux and inhibited SASP expression in OA-FLS. Intra-articular injection of synovium-targeted METTL3 siRNA suppressed cellular senescence propagation in joints and ameliorated DMM-induced cartilage destruction. CONCLUSIONS: Our study revealed the important role of FLS senescence in OA progression. Targeted METTL3 inhibition could alleviate the senescence of FLS and limit OA development in experimental animal models, providing a potential strategy for OA therapy.


Assuntos
Adenosina/análogos & derivados , Autofagia/genética , Senescência Celular/genética , Metiltransferases/genética , Osteoartrite/genética , Sinoviócitos/fisiologia , Adenosina/metabolismo , Animais , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Cartilagem Articular/patologia , Linhagem Celular , Condrócitos/metabolismo , Técnicas de Cocultura , Modelos Animais de Doenças , Progressão da Doença , Feminino , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Expressão Gênica , Humanos , Imunoprecipitação , Masculino , Metilação , Camundongos , Pessoa de Meia-Idade , Osteoartrite/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Regulação para Cima
9.
Water Sci Technol ; 86(5): 1181-1192, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36358054

RESUMO

To explore the effect of low temperature on the anaerobic digestion of pig manure, the anaerobic digestion experiment was carried out under the conditions of inoculum concentration of 30% and TS of 8%. Five low-temperature gradients of 4, 8, 12, 16 and 20 °C were set to study the activities of gas production, pH, solluted chemical oxygen demand (SCOD), volatile fatty acids (VFAs), coenzymes F420 and archaea community composition in the digestion process. The results were demonstrated: as the temperature decreased, the more unstable the gas production became, the less gas production produced, and the later the gas peak occurred. There were no significant peaks at either 4 °C or 8 °C, and the SCOD was unstable over time. From 12 °C, the SCOD increased over time, and the higher the temperature, the faster the growth trend. The pH was always greater than 7.6. 8, 12, 16, 20 °C had different degrees of VFAs accumulation at the late digestion stage. The higher the temperature, the greater the amount of volatile acid accumulation. When the VFAs of each reactor reached the maximum, the proportion of acetic acid also reached the highest. The digestion system of the five treatment groups was dominated by hydrogen-nutrient methanogenic pathway. The results could provide a further reference for the mechanism of anaerobic digestion of pig manure at low temperatures.


Assuntos
Archaea , Esterco , Suínos , Animais , Archaea/metabolismo , Anaerobiose , Temperatura , Ácidos Graxos Voláteis/metabolismo , Reatores Biológicos , Metano/metabolismo
10.
BMC Musculoskelet Disord ; 22(1): 858, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625082

RESUMO

INTRODUCTION: Total hip arthroplasty (THA) is generally considered to be one of the most successful orthopedic surgical procedures. However, no research has been conducted on the postoperative mental health of patients who underwent different approaches of THA. This paper seeks to compare the differences among three THA approaches: the normal lateral approach (NLA), the direct anterior approach (DAA) and the orthopädische chirurgie münchen (OCM) regarding their influence on patients' postoperative anxiety and depression. METHOD: A total of 95 THA patients were recruited for this study. All patients' preoperative information including results of Harris, SF-36 and Visual Analogue Scale (VAS) was carefully evaluated. Surgery-related data as well as five-day postoperative data were also collected. Three months after the surgery, a telephone follow-up was conducted to further evaluate patients' HADS and SF-36 results. RESULT: In the three-month postoperative evaluation of anxiety and depression, the NLA group scored significantly higher than both the DAA group and the OCM group, which was found relevant to the patient's incision length and five-day postoperative VAS results. A correlation between anxiety scores and the days of postoperative hospitalization was also noticed. Further analysis of patients' psychological state based on the SF-36 results revealed considerable differences in viability (VT) and social function (SF) between the NLA group and the OCM group. Other surgery-related data and postoperative data all demonstrated better results of the DAA group and the OCM group compared to the NLA group. CONCLUSION: Among the three different surgical approaches of THA, DAA and OCM compared with NLA are found to ease patients' postoperative anxiety and depression. LEVEL OF EVIDENCE: III.


Assuntos
Artroplastia de Quadril , Ansiedade/diagnóstico , Ansiedade/epidemiologia , Ansiedade/etiologia , Artroplastia de Quadril/efeitos adversos , Depressão/diagnóstico , Depressão/epidemiologia , Depressão/etiologia , Humanos , Período Pós-Operatório
11.
Biochem Biophys Res Commun ; 513(4): 933-939, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31003777

RESUMO

The lentiviral accessory protein Vpx enhances viral replication in macrophages, dendritic cells and resting CD4+ T cells by utilizing the host CRL4-DCAF1 E3 ligase to trigger the degradation of the intrinsic antiviral factor SAMHD1. Distinct from the species-specific recognition of either the N or C-terminus of SAMHD1 by Vpx proteins of different HIV-2 and SIV lineages, Vpx recruits SAMHD1 onto the same CRL4-DCAF1 complex. However, the determinants in DCAF1 that are required for Vpx-mediated SAMHD1 degradation have not been well characterized. Here, we demonstrate that the viral protein Vpx is resistant to suppression by a cellular inhibitor of the CRL4-DCAF1 E3 ligase, Merlin/NF2, through targeting a separate binding region in DCAF1. The Merlin binding-deficient DCAF1 truncation mutant (1-1417) is sufficient for Vpx-CRL4-DCAF1 E3 ligase assembly and SAMHD1 degradation. We found that the carboxyl-terminus ED-rich region (1312-1417) of DCAF1 is required for the nuclear localization of DCAF1 and for the Vpx-DCAF1 interaction. We identified the DCAF1 (1-1311) truncation mutant as a dominant negative mutant of wild-type DCAF1 that inhibits Vpx-mediated SAMHD1 degradation. These results suggest a unique strategy by which Vpx exploits DCAF1 to counteract this host restriction factor.


Assuntos
Lentivirus/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sítios de Ligação , Linhagem Celular , Núcleo Celular/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Proteínas Mutantes , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Replicação Viral
12.
Biochem Biophys Res Commun ; 516(4): 1242-1247, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31301771

RESUMO

The human adenovirus oncoprotein E4orf6 hijacks intracellular Cullin 5-based E3 ubiquitin ligases (CRL5s) to induce the degradation of host proteins, including p53, that impede efficient viral replication. The complex also relies on another viral protein, E1B55K, to recruit substrates for ubiquitination. However, the determinants of adenoviral E4orf6-CRL5 E3 ligase-mediated p53 degradation in the scaffolding protein Cullin5 remain rarely investigated. Here, we demonstrated that the viral protein E4orf6 triggered relocalization of the Cullin5 protein from the cytoplasm to the nucleus and induced activation of the CRL5 E3 ligase via facilitating neddylation. The expression of the deneddylase SENP8/Den1 was significantly downregulated by E4orf6. We then identified SENP8 as a natural restriction factor for E4orf6-induced p53 degradation. Furthermore, our results indicated that the NEDD8-conjugating E2 enzyme UBE2M was essential for E4orf6-mediated p53 degradation and that its dominant negative mutant UBE2M C111S dramatically blocked E4orf6 functions. The Nedd8-activating enzyme inhibitor MLN4924 decreased E4orf6-induced neddylation of the cullin5 protein and subsequently suppressed p53 degradation. Collectively, our findings illuminate the strategy by which this viral oncoprotein specifically utilizes the neddylation pathway to activate host CRL E3 ligases to degrade host restriction factors. Disrupting this post-translational modification is an attractive pharmacological intervention against human adenoviruses.


Assuntos
Proteínas E4 de Adenovirus/metabolismo , Proteínas Culina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenoviridae/metabolismo , Ciclopentanos/farmacologia , Regulação para Baixo , Endopeptidases/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Pirimidinas/farmacologia , Transdução de Sinais , Enzimas de Conjugação de Ubiquitina/metabolismo
13.
Lipids Health Dis ; 16(1): 201, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29029615

RESUMO

BACKGROUND: This study is to investigate the effect of fenofibrate on the bone quality of Type 2 diabetes mellitus (T2DM) mouse model. METHODS: T2DM mouse model was induced by high-fat-diet, and the mice were treated with fenofibrate (100 mg/kg) (DIO-FENO) or PBS (DIO-PBS) for 4 weeks. The bone microstructure and biomechanical properties of femora were analyzed by micro-CT and 3-Point bending test. The protein expression was detected by immunohistochemical staining and Western blot. The cell apoptosis was evaluated by TUNEL staining. The Bcl2, caspase 3, and osteoblast marker genes were detected by RT-qPCR. RESULTS: The biomechanical properties of bones from DIO-FENO group were significantly lower than those in the control and DIO-PBS groups. Besides, the trabecular number was lower than those of the other groups, though the cortical porosity was decreased compared with that of DIO-PBS group because of the increase of apoptotic cells. The expression of osteocalcin and collagen I were decreased after treatment with fenofibrate in T2DM mice. Moreover, the cell viability was decreased after treated with different concentrations of fenofibrate, and the expression of Runx2 decreased after treated with high dose of fenofibrate. CONCLUSION: Fenofibrate decreases the bone quality of T2DM mice through decreasing the expression of collagen I and osteocalcin, which may be resulted from the down regulation of Runx2 expression.


Assuntos
Densidade Óssea/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Diabetes Mellitus Tipo 2/genética , Dislipidemias/genética , Fenofibrato/efeitos adversos , Hipolipemiantes/efeitos adversos , Animais , Caspase 3/genética , Caspase 3/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/antagonistas & inibidores , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Dislipidemias/etiologia , Dislipidemias/metabolismo , Dislipidemias/patologia , Regulação da Expressão Gênica , Humanos , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteocalcina/genética , Osteocalcina/metabolismo , Porosidade/efeitos dos fármacos , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Microtomografia por Raio-X
14.
Cell Rep ; 43(2): 113749, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38329876

RESUMO

Aberrant long interspersed element 1 (LINE-1 or L1) activity can cause insertional mutagenesis and chromosomal rearrangements and has been detected in several types of cancers. Here, we show that neddylation, a post-translational modification process, is essential for L1 transposition. The antineoplastic drug MLN4924 is an L1 inhibitor that suppresses NEDD8-activating enzyme activity. Neddylation inhibition by MLN4924 selectively impairs ORF2p-mediated L1 reverse transcription and blocks the generation of L1 cDNA. Consistent with these results, MLN4924 treatment suppresses the retrotransposition activity of the non-autonomous retrotransposons short interspersed nuclear element R/variable number of tandem repeat/Alu and Alu, which rely on the reverse transcription activity of L1 ORF2p. The E2 enzyme UBE2M in the neddylation pathway, rather than UBE2F, is required for L1 ORF2p and retrotransposition. Interference with the functions of certain neddylation-dependent Cullin-really interesting new gene E3 ligases disrupts L1 reverse transcription and transposition activity. Our findings provide insights into the regulation of L1 retrotransposition and the identification of therapeutic targets for L1 dysfunctions.


Assuntos
Ciclopentanos , Elementos Nucleotídeos Longos e Dispersos , Pirimidinas , Retroelementos , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Aberrações Cromossômicas , Proteínas Culina/genética , Enzimas de Conjugação de Ubiquitina
15.
Acta Pharm Sin B ; 14(7): 2977-2991, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027231

RESUMO

Cyclin D1 has been recognized as an oncogene due to its abnormal upregulation in different types of cancers. Here, we demonstrated that cyclin D1 is SUMOylated, and we identified Itch as a specific E3 ligase recognizing SUMOylated cyclin D1 and mediating SUMO-induced ubiquitination and proteasome degradation of cyclin D1. We generated cyclin D1 mutant mice with mutations in the SUMOylation site, phosphorylation site, or both sites of cyclin D1, and found that double mutant mice developed a Mantle cell lymphoma (MCL)-like phenotype. We showed that arsenic trioxide (ATO) enhances cyclin D1 SUMOylation-mediated degradation through inhibition of cyclin D1 deSUMOylation enzymes, leading to MCL cell apoptosis. Treatment of severe combined immunodeficiency (SCID) mice grafted with MCL cells with ATO resulted in a significant reduction in tumor growth. In this study, we provide novel insights into the mechanisms of MCL tumor development and cyclin D1 regulation and discover a new strategy for MCL treatment.

16.
Immun Inflamm Dis ; 12(1): e1150, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38270308

RESUMO

BACKGROUND: Recently, many studies have been conducted to examine immune response modification at epigenetic level, but the candidate effect of RNA 5-methylcytosine (m5 C) modification on tumor microenvironment (TME) of acute myeloid leukemia (AML) is still unknown at present. METHODS: We assessed the patterns of m5 C modification among 417 AML cases by using nine m5 C regulators. Thereafter, we associated those identified modification patterns with TME cell infiltration features. Additionally, stepwise regression and LASSO Cox regression analyses were conducted for quantifying patterns of m5 C modification among AML cases to establish the m5 C-score. Meanwhile, we validated the expression of genes in the m5C-score model by qRT-PCR. Finally, the present work analyzed the association between m5 C-score and AML clinical characteristics and prognostic outcomes. RESULTS: In total, three different patterns of m5 C modification (m5 C-clusters) were identified, and highly differentiated TME cell infiltration features were also identified. On this basis, evaluating patterns of m5 C modification in single cancer samples was important for evaluating the immune/stromal activities in TME and for predicting prognosis. In addition, the m5 C-score was established, which showed a close relation with the overall survival (OS) of test and training set samples. Moreover, multivariate Cox analysis suggested that our constructed m5 C-score served as the independent predicting factor for the prognosis of AML (hazard ratio = 1.57, 95% confidence interval = 1.38-1.79, p < 1e-5 ). CONCLUSIONS: This study shows that m5 C modification may be one of the key roles in the formation of diversity and complexity of TME. Meanwhile, assessing the patterns of m5 C modification among individual cancer samples is of great importance, which provides insights into cell infiltration features within TME, thereby helping to develop relevant immunotherapy and predict patient prognostic outcomes.


Assuntos
Leucemia Mieloide Aguda , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Leucemia Mieloide Aguda/genética , RNA , Diferenciação Celular , Metilação
17.
Nat Metab ; 6(3): 531-549, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409606

RESUMO

Ageing increases susceptibility to neurodegenerative disorders, such as Alzheimer's disease (AD). Serum levels of sclerostin, an osteocyte-derived Wnt-ß-catenin signalling antagonist, increase with age and inhibit osteoblastogenesis. As Wnt-ß-catenin signalling acts as a protective mechanism for memory, we hypothesize that osteocyte-derived sclerostin can impact cognitive function under pathological conditions. Here we show that osteocyte-derived sclerostin can cross the blood-brain barrier of old mice, where it can dysregulate Wnt-ß-catenin signalling. Gain-of-function and loss-of-function experiments show that abnormally elevated osteocyte-derived sclerostin impairs synaptic plasticity and memory in old mice of both sexes. Mechanistically, sclerostin increases amyloid ß (Aß) production through ß-catenin-ß-secretase 1 (BACE1) signalling, indicating a functional role for sclerostin in AD. Accordingly, high sclerostin levels in patients with AD of both sexes are associated with severe cognitive impairment, which is in line with the acceleration of Αß production in an AD mouse model with bone-specific overexpression of sclerostin. Thus, we demonstrate osteocyte-derived sclerostin-mediated bone-brain crosstalk, which could serve as a target for developing therapeutic interventions against AD.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Feminino , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/uso terapêutico , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/uso terapêutico , Osteócitos/metabolismo , Osteócitos/patologia , beta Catenina/metabolismo , beta Catenina/uso terapêutico , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/uso terapêutico , Via de Sinalização Wnt , Cognição , Envelhecimento
18.
Environ Sci Pollut Res Int ; 30(46): 102363-102373, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37665437

RESUMO

A novel SnO2-Sb/AP (attapulgite) particle electrode was prepared for three-dimensional electrocatalytic oxidation (3D/EO) of organic pollutants using a co-sintering method. The electrochemical properties and micromorphology were determined using polarization, cyclic voltammetry (CV), and field emission scanning electron microscope (FE-SEM), and compared with activated carbon (AC), AP, and TiO2/AP particle electrodes. Besides, their potential application in the electrochemical degradation of phenol was investigated. The SnO2-Sb/AP particle electrode exhibited higher electrochemical activity than other particle electrodes due to its large number of active sites, low transfer coefficient (α, 0.12), and high-volt ampere charge (q*, 1.18 C·cm-2). The electrochemical CODCr degradation efficiency (100%) of phenol on SnO2-Sb/AP particle electrodes is much higher than for other particle electrodes. Moreover, an excellent stability of the SnO2-Sb/AP particle electrode is also verified by repeated experiments. These results indicate that the SnO2-Sb/AP particle electrodes broaden the application area of clays and are expected to be a promising method for 3D/EO.

19.
Immun Inflamm Dis ; 11(1): e743, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36705422

RESUMO

INTRODUCTION: Chronic periodontitis (CP) is an inflammatory periodontal disease with high incidence and complex pathology. This research is aimed to investigate the function of exosomal miR-205-5p (Exo-miR-205-5p) in CP and the underlying molecular mechanisms. METHOD: Exo-miR-205-5p was isolated from miR-205-5p mimics-transfected periodontal ligament stem cells (PDLSCs), and subsequently cocultured with lipopolysaccharide (LPS)-induced cells or injected into LPS-treated rats. The mRNA expression of inflammatory factors and Th17/Treg-related factors were measured by quantitative real-time PCR. The contents of inflammatory factors and the percentages of Th17/Treg cells were measured by enzyme-linked immunosorbent assay and flow cytometry, respectively. Besides, the target relation between miR-205-5p and X-box binding protein 1 (XBP1) was explored. RESULTS: MiR-205-5p was downregulated in LPS-induced PDLSCs and corresponding exosomes. Exo-miR-205-5p inhibited inflammatory cell infiltration, decreased the production of TNF-α, IL-1ß, and IL-6, and decreased the percentage of Th17 cells in LPS-treated rats. In addition, XBP1 was a target of miR-205-5p. Overexpression of XBP1 weakened the effects of Exo-miR-205-5p on inhibiting inflammation and regulating Treg/Th17 balance in LPS-induced cells. CONCLUSIONS: Exo-miR-205-5p derived from PDLSCs relieves the inflammation and balances the Th17/Treg cells in CP through targeting XBP1.


Assuntos
Periodontite Crônica , MicroRNAs , Células-Tronco , Proteína 1 de Ligação a X-Box , Animais , Ratos , Periodontite Crônica/metabolismo , Periodontite Crônica/patologia , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , MicroRNAs/genética , Ligamento Periodontal/citologia , Ligamento Periodontal/patologia , Células-Tronco/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
20.
Bioact Mater ; 24: 477-496, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36714330

RESUMO

Large bone defects resulting from fractures and disease are a major clinical challenge, being often unable to heal spontaneously by the body's repair mechanisms. Lines of evidence have shown that hypoxia-induced overproduction of ROS in bone defect region has a major impact on delaying bone regeneration. However, replenishing excess oxygen in a short time cause high oxygen tension that affect the activity of osteoblast precursor cells. Therefore, reasonably restoring the hypoxic condition of bone microenvironment is essential for facilitating bone repair. Herein, we designed ROS scavenging and responsive prolonged oxygen-generating hydrogels (CPP-L/GelMA) as a "bone microenvironment regulative hydrogel" to reverse the hypoxic microenvironment in bone defects region. CPP-L/GelMA hydrogels comprises an antioxidant enzyme catalase (CAT) and ROS-responsive oxygen-releasing nanoparticles (PFC@PLGA/PPS) co-loaded liposome (CCP-L) and GelMA hydrogels. Under hypoxic condition, CPP-L/GelMA can release CAT for degrading hydrogen peroxide to generate oxygen and be triggered by superfluous ROS to continuously release the oxygen for more than 2 weeks. The prolonged oxygen enriched microenvironment generated by CPP-L/GelMA hydrogel significantly enhanced angiogenesis and osteogenesis while inhibited osteoclastogenesis. Finally, CPP-L/GelMA showed excellent bone regeneration effect in a mice skull defect model through the Nrf2-BMAL1-autophagy pathway. Hence, CPP-L/GelMA, as a bone microenvironment regulative hydrogel for bone tissue respiration, can effectively scavenge ROS and provide prolonged oxygen supply according to the demand in bone defect region, possessing of great clinical therapeutic potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA