Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 427, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769501

RESUMO

BACKGROUND: Our meta-analysis examines the effects of melatonin on wheat under varying abiotic stress conditions, focusing on photosynthetic parameters, chlorophyll fluorescence, leaf water status, and photosynthetic pigments. We initially collected 177 publications addressing the impact of melatonin on wheat. After meticulous screening, 31 published studies were selected, encompassing 170 observations on photosynthetic parameters, 73 on chlorophyll fluorescence, 65 on leaf water status, 240 on photosynthetic pigments. RESULTS: The analysis revealed significant heterogeneity across studies (I² > 99.90%) for the aforementioned parameters and evidence of publication bias, emphasizing the complex interaction between melatonin application and plant physiological responses. Melatonin enhanced the overall response ratio (lnRR) for photosynthetic rates, stomatal conductance, transpiration rates, and fluorescence yields by 20.49, 22.39, 30.96, and 1.09%, respectively, compared to the control (no melatonin). The most notable effects were under controlled environmental conditions. Moreover, melatonin significantly improved leaf water content and reduced water potential, particularly under hydroponic conditions and varied abiotic stresses, highlighting its role in mitigating water stress. The analysis also revealed increases in chlorophyll pigments with soil drenching and foliar spray, and these were considered the effective application methods. Furthermore, melatonin influenced chlorophyll SPAD and intercellular CO2 concentrations, suggesting its capacity to optimize photosynthetic efficiency. CONCLUSIONS: This synthesis of meta-analysis confirms that melatonin significantly enhances wheat's resilience to abiotic stress by improving photosynthetic parameters, chlorophyll fluorescence, leaf water status, and photosynthetic pigments. Despite observed heterogeneity and publication bias, the consistent beneficial effects of melatonin, particularly under controlled conditions with specific application methods e.g. soil drenching and foliar spray, demonstrate its utility as a plant growth regulator for stress management. These findings encourage focused research and application strategies to maximize the benefits of melatonin in wheat farming, and thus contributing to sustainable agricultural practices.


Assuntos
Melatonina , Fotossíntese , Estresse Fisiológico , Triticum , Melatonina/farmacologia , Triticum/fisiologia , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Fotossíntese/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Clorofila/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia
2.
Physiol Plant ; 176(2): e14294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38634335

RESUMO

In our comprehensive meta-analysis, we initially collected 177 publications focusing on the impact of melatonin on wheat. After meticulous screening, 40 published studies were selected, encompassing 558 observations for antioxidant enzymes, 312 for reactive oxygen species (ROS), and 92 for soluble biomolecules (soluble sugar and protein). This analysis revealed significant heterogeneity across studies (I2 > 99% for enzymes, ROS, and soluble biomolecules) and notable publication bias, indicating the complexity and variability in the research field. Melatonin application generally increased antioxidant enzyme activities [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX)] in wheat, particularly under stress conditions, such as high temperature and heavy-metal exposure. Compared to control, melatonin application increased SOD, POD, CAT, and APX activities by 29.5, 16.96, 35.98, and 171.64%, respectively. Moreover, oxidative stress markers like hydrogen peroxide (H2O2), superoxide anion (O2), and malondialdehyde (MDA) decreased with melatonin by 23.73, 13.64, and 21.91%, respectively, suggesting a reduction in oxidative stress. The analysis also highlighted melatonin's role in improving carbohydrate metabolism and antioxidant defenses. Melatonin showed an overall increase of 12.77% in soluble sugar content, and 22.76% in glutathione peroxidase (GPX) activity compared to the control. However, the effects varied across different wheat varieties, environmental conditions, and application methods. Our study also uncovered complex relationships between antioxidant enzyme activities and H2O2 levels, indicating a nuanced regulatory role of melatonin in oxidative stress responses. Our meta-analysis demonstrates the significant role of melatonin in increasing wheat resilience to abiotic stressors, potentially through its regulatory impact on antioxidant defense systems and stress response.


Assuntos
Antioxidantes , Melatonina , Antioxidantes/metabolismo , Melatonina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Triticum/metabolismo , Peróxido de Hidrogênio/metabolismo , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Peroxidases/metabolismo , Peroxidase/metabolismo , Estresse Oxidativo , Açúcares/metabolismo , Malondialdeído/metabolismo
3.
Int J Mol Sci ; 25(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38674136

RESUMO

Cereal crops are crucial for global food security; however, they are susceptible to various environmental stresses that significantly hamper their productivity. In response, melatonin has emerged as a promising regulator, offering potential benefits for stress tolerance and crop growth. This review explores the effects of melatonin on maize, sorghum, millet, rice, barley, and wheat, aiming to enhance their resilience to stress. The application of melatonin has shown promising outcomes, improving water use efficiency and reducing transpiration rates in millet under drought stress conditions. Furthermore, it enhances the salinity and heavy metal tolerance of millet by regulating the activity of stress-responsive genes. Similarly, melatonin application in sorghum enhances its resistance to high temperatures, low humidity, and nutrient deficiency, potentially involving the modulation of antioxidant defense and aspects related to photosynthetic genes. Melatonin also exerts protective effects against drought, salinity, heavy metal, extreme temperatures, and waterlogging stresses in maize, wheat, rice, and barley crops by decreasing reactive oxygen species (ROS) production through regulating the antioxidant defense system. The molecular reactions of melatonin upregulated photosynthesis, antioxidant defense mechanisms, the metabolic pathway, and genes and downregulated stress susceptibility genes. In conclusion, melatonin serves as a versatile tool in cereal crops, bolstering stress resistance and promoting sustainable development. Further investigations are warranted to elucidate the underlying molecular mechanisms and refine application techniques to fully harness the potential role of melatonin in cereal crop production systems.


Assuntos
Produtos Agrícolas , Grão Comestível , Melatonina , Estresse Fisiológico , Melatonina/metabolismo , Melatonina/farmacologia , Grão Comestível/metabolismo , Grão Comestível/genética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Secas , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo
4.
J Sci Food Agric ; 104(12): 7182-7193, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38624038

RESUMO

BACKGROUND: Grape peels, the main by-products of wine processing, are rich in bioactive ingredients of phenolics, including proanthocyanidins, flavonoids and anthocyanins. Phenolics have the function of regulating intestinal microbiota and promoting intestinal health. From the perspective of the dietary nutrition of grape peel phenolics (GPP), the present study aimed to investigate the influence of GPP on the composition and metabolism of human gut microbiota during in vitro fermentation. RESULTS: The results indicated that GPP could decrease pH and promote the production of short-chain fatty acids. ACE and Chao1 indices in GPP group were lower than that of the Blank group. GPP enhanced the levels of Lachnospiraceae UCG-004, Bacteroidetes and Roseburia, but reduced the Firmicutes/Bacteroidetes ratio. Kyoto Encyclopedia of Proteins and Genome enrichment pathways related to phenolic acid metabolism mainly included flavonoid, anthocyanin, flavone and flavonol biosynthesis. Gut microbiota could accelerate the release and breakdown of phenolic compounds, resulting in a decrease in the content of hesperetin-7-O-glucoside, delphinidin-3-O-glucoside and cyanidin-3-rutinoside etc. In vitro antibacterial test found that GPP increased the diameters of the inhibition zones of Escherichia coli and Staphylococcus aureus in a dose-dependent manner. CONCLUSION: The results of the present study revealed that GPP might be a potential prebiotic-like to prevent diseases by improving gut health. The findings could provide a theoretical basis for the potential to exploit GPP as dietary nutrition to maintain intestinal function. © 2024 Society of Chemical Industry.


Assuntos
Bactérias , Colo , Fermentação , Frutas , Microbioma Gastrointestinal , Fenóis , Vitis , Vitis/química , Vitis/metabolismo , Humanos , Fenóis/metabolismo , Frutas/química , Frutas/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Colo/microbiologia , Colo/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Antocianinas/metabolismo , Ácidos Graxos Voláteis/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/química , Escherichia coli/metabolismo , Flavonoides/metabolismo
5.
Sci Total Environ ; 916: 170017, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38219995

RESUMO

Anthropogenic nitrogen (N) deposition and increased precipitation are known to alter soil microbial communities. However, the combined effects of elevated N deposition and increased precipitation on soil microbial community dynamics and co-occurrence networks in temperate forests remain elusive. In this study, we conducted a field manipulation experiment by applying N solution and water to the forest canopy to simulate natural N deposition and increased precipitation in a temperate forest. We collected samples in the litter layer, organic soil layer, and mineral soil layer in 2018-2019 after 6-7 years of N and water treatments, and explored how elevated N deposition and increased precipitation regulate soil microbial diversity, community composition, and co-occurrence networks in different soil layers and at different sampling times. We found that the effects of N deposition and increased precipitation on soil microbial communities varied with soil layers and sampling times. Compared to the ambient environment, single canopy N addition (CN) or single canopy water addition (CW) did not affect bacterial Shannon diversity in the mineral soil layer in 2018, but the combined canopy N and water additions (CNW) decreased it in this layer at this time. CN increased fungal OTU richness in the organic and mineral soil layers in 2018; however, CW and CNW did not have an effect on it in the same layer at the same time. CW and CNW, but not CN, significantly affected bacterial and fungal community compositions in the litter layer in 2018 and in the organic soil layer in 2019. In contrast, CN, but not CW or CNW, significantly affected fungal community composition in the litter layer in 2019. CNW exhibited higher complexities of bacterial and fungal co-occurrence networks than CN and the ambient environment, indicating increased precipitation can strengthen the effect of N deposition on the complexity of bacterial and fungal co-occurrence networks. Our findings suggest that increased precipitation alters the effects of atmospheric N deposition on soil bacterial and fungal communities in this temperate forest, depending on soil layer and sampling time. Moreover, both bacterial and fungal community compositions are sensitive to increased precipitation, but the bacterial community composition is more sensitive to N deposition than the fungal community composition in the organic and mineral soil layers in this forest.


Assuntos
Micobioma , Nitrogênio , Nitrogênio/análise , Solo , Microbiologia do Solo , Florestas , Bactérias , Minerais
6.
Front Vet Sci ; 11: 1371939, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39132431

RESUMO

The motility pattern of the reticulo-rumen is a key factor affecting feed intake, rumen digesta residence time, and rumen fermentation. However, it is difficult to study reticulo-ruminal motility using general methods owing to the complexity of the reticulo-ruminal structure. Thus, we aimed to develop a technique to demonstrate the reticulo-ruminal motility pattern in static goats. Six Xiangdong black goats (half bucks and half does, body weight 29.5 ± 1.0 kg) were used as model specimens. Reticulo-ruminal motility videos were obtained using medical barium meal imaging technology. Videos were then analyzed using image annotation and the centroid method. The results showed that reticulo-ruminal motility was divided into primary (stages I, II, III, and IV) and secondary contraction, and the movements of ruminal digesta depended on reticulo-ruminal motility. Our results indicated common motility between the ruminal dorsal sac and ruminal dorsal blind sac. We observed that stages I (3.92 vs. 3.21 s) (P < 0.01), II (4.81 vs. 4.23 s) (P < 0.01), and III (5.65 vs. 5.15 s) (P < 0.05); interval (53.79 vs. 50.95 s); secondary contraction time (10.5 vs. 10 s); and were longer, whereas stage IV appeared to be shorter in the bucks than in the does (7.83 vs. 14.67 s) (P < 0.01). The feasibility of using barium meal imaging technology for assessing reticulo-ruminal and digesta motility was verified in our study. We determined the duration of each stage of reticulo-ruminal motility and collected data on the duration and interval of each stage of ruminal motility in goats. This research provides new insights for the study of gastrointestinal motility and lays a solid foundation for the study of artificial rumen.

7.
Ying Yong Sheng Tai Xue Bao ; 35(1): 141-152, 2024 Jan.
Artigo em Zh | MEDLINE | ID: mdl-38511450

RESUMO

Mixing native broadleaved tree species is a widely used method for renovating Pinus massoniana plantations. Soil microbial necromass carbon and organic carbon fractions are important parameters for evaluating the impacts of tree species mixing and soil organic carbon (SOC) stability. However, their responses to the mixing and renovation of P. massoniana plantation has not been understood yet. Here, we selected a pure P. massoniana plantation (PP) and a mixed P. massoniana and Castanopsis hystrix plantation, with ages of 16 (MP16) and 38 years (MP38), respectively, as the research objects. We quantified soil physical and chemical properties, microbial necromass carbon content, and organic carbon components at different soil layers to reveal whether and how the introduction of C. hystrix into P. massoniana plantation affected soil microbial necromass carbon and organic carbon components. The results showed that the mixed P. massoniana and C. hystrix plantation significantly reduced fungal necromass carbon content and the ratio of fungal/bacterial necromass carbon in the 0-20 cm and 20-40 cm soil layers. There were no significant differences in microbial necromass carbon contents, bacterial necromass carbon contents, and their contributions to SOC among the different plantations. The contribution of fungal necromass carbon to SOC was higher than that of bacterial necromass carbon in all plantation types. The contribution of soil mineral-associated organic carbon (MAOC) to SOC was higher than that of occluded particulate organic carbon (oPOC) and light-free particulate organic carbon (fPOC) for all plantation types. Mixing the precious broadleaved tree species (i.e., C. hystrix) with coniferous species (P. massoniana) significantly increased MAOC content and the contribution of MAOC, oPOC, and fPOC to SOC in the 0-20 cm and 20-40 cm soil layers. The MAOC of MP38 was significantly higher than that of PP in all soil layers and the MAOC of MP38 stands were significantly higher than MP16 stands in the 20-40 cm, 40-60 cm, and 60-100 cm soil layers, indicating that hybridization enhanced SOC stability and that the SOC of MP38 stands were more stable than MP16 stands. SOC and total nitrogen contents were the main environmental factors driving the changes in soil microbial necromass carbon, while soil total nitrogen and organically complexed Fe-Al oxides were the primary factors affecting organic carbon fraction. Therefore, SOC stability can be enhanced by introducing native broadleaved species, such as C. hystrix, during the management of the P. massoniana plantation.


Assuntos
Pinus , Árvores , Carbono/análise , Solo/química , Microbiologia do Solo , Nitrogênio/análise , Bactérias , China , Florestas
8.
Animals (Basel) ; 14(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38891704

RESUMO

The study aimed to investigate the effect of dietary chitosan oligosaccharides (COS) meal levels on the nutrient disappearance rate, rumen fermentation, and microflora of beef cattle in vitro. A total of 24 fermentation tanks were randomly divided into four treatments containing 0% COS (CON), 0.02% COS, 0.04% COS, and 0.08% COS for an 8-day experiment period, with each treatment comprising six replicates. The disappear rates of DM, CP, EE, and total gas production were quadratically increased with increasing COS levels. The disappear rates of DM, CP, EE, and ADF were greatest, whereas the total gas production was lowest in the 0.08% COS group. The pH, NH3-N, MCP, the content of propionate, isobutyrate, butyrate, valerate, and the A/P were quadratically increased with increasing COS levels, while the A/P were linearly decreased. The pH, MCP, and the content of propionate, and butyrate were highest, whereas the NH3-N and the content of acetate, isobutyrate, valerate, and the A/P were lowest in the 0.08% COS group. Microbiomics analysis showed that the rumen microbial diversity was not altered between the CON and the 0.08% COS group. However, the relative abundance of Methanosphaera, Ruminococcus, Endomicrobium, and Eubacterium groups was increased, and the relative abundance of pathogenic bacteria Dorea and Escherichia-Shigella showed a decrease in the 0.08% COS group. Overall, the 0.08% COS was the most effective among the three addition levels, resulting in an increase in the disappearance rate of in vitro fermented nutrients and improvements in rumen fermentation indexes and microbial communities. This, in turn, led to the maintenance of rumen health.

9.
Front Microbiol ; 15: 1348729, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380091

RESUMO

Introduction: Excessive intake of lactate caused by improper use of silage in animal husbandry has adverse effects on rumen fermentation, such as rumen acidosis. The speed of absorption and metabolism of D-lactate in rumen epithelial cells was slower than that of L-lactate, making D-lactate more prone to accumulate and induce rumen acidosis. Therefore, this study was conducted to explore the effects of dietary D-lactate levels on rumen fermentation of beef cattle and its mechanism in an in vitro system. Methods: This experiment was adopted in single-factor random trial design, with 5 days for adaptation and 3 days for sample collection. Three treatments (n = 8/treatment) were used: (1) D-LA (0.3%), basal fermentation substrate with 0.3% (dry matter, DM basis) D-lactate; (2) D-LA (0.75%), basal fermentation substrate with 0.75% (DM basis) D-lactate; and (3) D-LA (1.2%), basal fermentation substrate with 1.2% (DM basis) D-lactate. Results: With the dietary D-lactate levels increased, the daily production of total gas, hydrogen and methane, as well as the ruminal concentrations of acetate, propionate, butyrate, isobutyrate, valerate, isovalerate, total volatile fatty acid and D-lactate increased (p < 0.05), but the ruminal pH and acetate/propionate ratios decreased (p < 0.05). Principle coordinate analysis based on Bray-Curtis distance showed that increasing dietary D-lactate levels could significantly affect the structure of rumen bacterial community (p < 0.05), but had no significant effect on the structure of rumen eukaryotic community (p > 0.05). NK4A214_group, Ruminococcus_gauvreauii_group, Eubacterium_oxidoreducens_group, Escherichia-Shigella, Marvinbryantia and Entodinium were enriched in D-LA (1.2%) group (p < 0.05), as well as WCHB1-41, vadinBE97, Clostridium_sensu_stricto_1, Anaeroplasma and Ruminococcus were enriched in D-LA (0.3%) group (p < 0.05). Changes in the composition of ruminal microorganisms affected rumen metabolism, mainly focus on the biosynthesis of glycosaminoglycans (p < 0.05). Discussion: Overall, feeding whole-plant corn silage with high D-lactate content could not induce rumen acidosis, and the metabolization of dietary D-lactate into volatile fatty acids increased the energy supply of beef cattle. However, it also increased the ruminal CH4 emissions and the relative abundance of opportunistic pathogen Escherichia-Shigella in beef cattle. The relative abundance of Verrucomicrobiota and Escherichia-Shigella may be influenced by glycosaminoglycans, reflecting the interaction between rumen microorganisms and metabolites.

10.
Sci Total Environ ; 927: 172164, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38580112

RESUMO

Soil nitrogen (N) availability affects plant carbon (C) utilization. However, it is unclear how various tree functional types respond to N addition in terms of C assimilation, allocation, and storage. Here, a microcosm experiment with dual 13C and 15N labeling was conducted to study the effects of N addition (i.e., control, 0 g N kg-1; moderate N addition, 1.68 g N kg-1; and high N addition, 3.36 g N kg-1 soil) on morphological traits, on changes in nonstructural carbohydrates (NSC) in different organs, as well as on C and N uptake and allocation in three European temperate forest tree species (i.e., Acer pseudoplatanus, Picea abies and Abies alba). Our results demonstrated that root N uptake rates of the three tree species increased by N addition. In A. pseudoplatanus, N uptake by roots, N allocation to aboveground organs, and aboveground biomass allocation significantly improved by moderate and high N addition. In A. alba, only the high N addition treatment considerably raised aboveground N and C allocation. In contrast, biomass as well as C and N allocation between above and belowground tissues were not altered by N addition in P. abies. Meanwhile, NSC content as well as C and N coupling (represented by the ratio of relative 13C and 15N allocation rates in organs) were affected by N addition in A. pseudoplantanus and P. abies but not in A. alba. Overall, A. pseudoplatanus displayed the highest sensitivity to N addition and the highest N requirement among the three species, while P. abies had a lower N demand than A. alba. Our findings highlight that the responses of C and N allocation to soil N availability are species-specific and vary with the amount of N addition.


Assuntos
Isótopos de Carbono , Carbono , Isótopos de Nitrogênio , Nitrogênio , Solo , Árvores , Nitrogênio/metabolismo , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Carbono/metabolismo , Solo/química , Picea , Especificidade da Espécie , Abies , Acer , Raízes de Plantas/metabolismo , Fertilizantes
11.
Sci Total Environ ; 907: 167925, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37863215

RESUMO

Subtropical ecosystems are strongly affected by nitrogen (N) deposition, impacting soil organic matter (SOM) availability and stocks. Here we aimed to reveal the effects of N deposition on i) the structure and functioning of microbial communities and ii) the temperature sensitivity (Q10) of SOM decomposition. Phosphorus (P) limited evergreen forest in Guangdong Province, southeastern China, was selected, and N deposition (factor level: N (100 kg N ha-1 y-1 (NH4NO3)) and control (water), arranged into randomized complete block design (n = 3)) was performed during 2.5 y. After that soils from 0 to 20 cm were collected, analyzed for the set of parameters and incubated at 15, and 25, and 35 °C for 112 days. N deposition increased the microbial biomass N and the content of fungal and Gram-positive bacterial biomarkers; activities of beta-glucosidase (BG) and acid phosphatase (ACP) also increased showing the intensification of SOM decomposition. The Q10 of SOM decomposition under N deposition was 1.66 and increased by 1.4 times than under control. Xylosidase (BX), BG, and ACP activities increased with temperature under N but decreased with the incubation duration, indicating either low production and/or decomposition of enzymes. Activities of polyphenol-(PPO) and peroxidases (POD) were higher under N than in the control soil and were constant during the incubation showing the intensification of recalcitrant SOM decomposition. At the early incubation stage (10 days), the increase of Q10 of CO2 efflux was explained by the activities of BX, BQ, ACP, and POD and the quality of the available dissolved organic matter pool. At the later incubation stages (112 days), the drop of Q10 of CO2 efflux was due to the depletion of the labile organic substances and the shift of microbial community structure to K-strategists. Thus, N deposition decoupled the effects of extracellular enzyme activities from microbial community structure on Q10 of SOM decomposition in the subtropical forest soil.


Assuntos
Ecossistema , Solo , Carbono , Dióxido de Carbono , Florestas , Nitrogênio , Solo/química , Microbiologia do Solo , Temperatura
12.
PNAS Nexus ; 3(3): pgae096, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528952

RESUMO

Dysfunctional liver regeneration following surgical resection remains a major cause of postoperative mortality and has no therapeutic options. Without targeted therapies, the current treatment paradigm relies on supportive therapy until homeostasis can be achieved. Pharmacologic acceleration of regeneration represents an alternative therapeutic avenue. Therefore, we aimed to generate a small molecule inhibitor that could accelerate liver regeneration with an emphasis on diseased models, which represent a significant portion of patients who require surgical resection and are often not studied. Utilizing a clinically approved small molecule inhibitor as a parent compound, standard medicinal chemistry approaches were utilized to generate a small molecule inhibitor targeting serine/threonine kinase 4/3 (MST1/2) with reduced off-target effects. This compound, mCLC846, was then applied to preclinical models of murine partial hepatectomy, which included models of diet-induced metabolic dysfunction-associated steatohepatitis (MASH). mCLC846 demonstrated on target inhibition of MST1/2 and reduced epidermal growth factor receptor inhibition. The inhibitory effects resulted in restored pancreatic beta-cell function and survival under diabetogenic conditions. Liver-specific cell-line exposure resulted in Yes-associated protein activation. Oral delivery of mCLC846 perioperatively resulted in accelerated murine liver regeneration and improved survival in diet-induced MASH models. Bulk transcriptional analysis of regenerating liver remnants suggested that mCLC846 enhanced the normal regenerative pathways and induced them following liver resection. Overall, pharmacological acceleration of liver regeneration with mCLC846 was feasible, had an acceptable therapeutic index, and provided a survival benefit in models of diet-induced MASH.

13.
Front Aging Neurosci ; 15: 1340706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288278

RESUMO

Background: The calibrator in immunoassay plays an essential role in diagnosing Alzheimer's disease (AD). Presently, the most well-studied biomarkers for AD diagnosis are three phosphorylated Tau (p-Tau): p-Tau231, p-Tau217, and p-Tau181. Glycogen synthase-3beta (GSK3ß)-phosphorated Tau-441 is the most commonly used calibrator for p-Tau immunoassays. However, the batch-to-batch inconsistency issue of the commonly used GSK3ß-phosphorylated Tau-441 limits its clinical application. Methods: We have successfully generated and characterized 61 Tau monoclonal antibodies (mAbs) with distinct epitopes by using the hybridoma technique and employed them as capture or detection antibodies for p-Tau immunoassays. Through chemical synthesis, we synthesized calibrators, which are three peptides including capture and detection antibody epitopes, for application in immunoassays that detect p-Tau231, p-Tau217, and p-Tau181. The novel calibrators were applied to Enzyme-linked immunosorbent assay (ELISA) and Single-molecule array (Simoa) platforms to validate their applicability and establish a range of p-Tau immunoassays. Results: By employing the hybridoma technique, 49 mAbs recognizing Tau (1-22), nine mAbs targeting p-Tau231, one mAb targeting p-Tau217, and two mAbs targeting p-Tau181 were developed. Peptides, including recognition epitopes of capture and detection antibodies, were synthesized. These peptides were used as calibrators to develop 60 immunoassays on the ELISA platform, of which six highly sensitive immunoassays were selected and applied to the ultra-sensitive Simoa platform. Remarkably, the LODs were 2.5, 2.4, 31.1, 32.9, 46.9, and 52.1 pg/ml, respectively. Conclusion: Three novel p-Tau calibrators were successfully generated and validated, which solved the batch-to-batch inconsistency issue of GSK3ß-phosphorylated Tau-441. The novel calibrators exhibit the potential to promote the standardization of clinical AD diagnostic calibrators. Furthermore, we established a series of highly sensitive and specific immunoassays on the Simoa platform based on novel calibrators, which moved a steady step forward in p-Tau immunoassay application for AD diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA