Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Ann Vasc Surg ; 108: 419-425, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39025210

RESUMO

BACKGROUND: Kasabach-Merritt phenomenon (KMP) is characterized by profound thrombocytopenia and consumptive coagulopathy associated with vascular tumors, such as Kaposiform hemangioendothelioma (KHE). The pathogenesis of KMP remains unclear and its treatment is challenging. In this study, we tried to establish an animal model of KMP, which may facilitate the research on the etiology and new treatment. METHODS: A fresh sample of KHE from a one-month-old female infant with KMP was scissored into pieces and transplanted subcutaneously into the back of the nude mice. Blood routine examination was performed before the transplantation and 2, 4, 8, 12, and 16 weeks after the transplantation. Transplanted tumors were harvested 2, 4, 8, 12, and 16 weeks after the transplantation. H-E staining, immunohistochemistry staining of cluster of differentiation 31 (CD31) and alpha-smooth muscle actin (α-SMA), and ultrastructural observation were performed on the plugs. RESULTS: Blood test showed a significant decrease in the number of platelets 2 weeks after transplantation. The number of platelets showed an overall trend of recovery from 2 weeks despite a slight decrease at 12 weeks after transplantation. There was no significant difference in the platelet count at 16 weeks after transplantation compared with the original state. H-E staining showed abundant irregular blood sinuses in the transplanted tumors with plenty of blood cells 2 weeks after the transplantation. 4, 8, and 12 weeks after transplantation, the density of blood sinuses decreased progressively. 16 weeks after transplantation, the plugs involuted into fibrous tissue. Immunohistochemistry staining showed the positive expression of CD31 in the endothelial cells and α-SMA in the perivascular cells. Ultrastructural observation also showed the features of KHE and progressive evolution of the tumors. CONCLUSIONS: We successfully established an experimental model of KMP by the xenograft of KHE in nude mice, which manifested profound thrombocytopenia and typical pathological structure.

2.
Ann Plast Surg ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984657

RESUMO

OBJECTIVE: The aim of the study is to investigate the effect and feasibility of using absorbable plate instead of frontal and orbital bar and inverted U-shaped osteotomy to correct the widening of orbital distance. METHODS: The surgical effect and feasibility of using absorbable plate instead of frontal and orbital bridge plus inverted U-osteotomy for orbital widening syndrome in seven cases between January 2019 and February 2022 were retrospectively analyzed. First, the surgical procedure for orbital hypertelorism was inverted U-shaped orbital osteotomy, and a frontal bone flap was removed, exposing the superior orbital margin and the orbital circumference, and the orbital bone was directly cut off by inverted U-shaped osteotomy. The widened bone in the middle of the orbit was removed, and a long absorbable plate was used to replace the orbitofrontal bridge. The two sides of the orbit were fixed on the absorbable plate, and the absorbable plate was fixed on the rear skull. The clinical effect of treatment, complications (such as cerebrospinal fluid leakage and infection), safety, and feasibility of surgery were evaluated. RESULTS: Using absorbable plate instead of fronto-orbital bridge achieved the effect of orbitofrontal bridge, without orbital distance widening, cerebrospinal fluid leakage, and intracranial infection. Operating time was reduced. There was no metal fixation, and there was no risk of a second operation. CONCLUSIONS: The effect of replacing the frontal-orbital bridge with an absorbable plate and inverted U-shaped osteotomy is positive, the operation time is short, and the orbital distance is clearly improved. This approach can replace the traditional orbital-distance operation, and the incidence of postoperative cerebrospinal fluid leakage and infection is low. Long-term follow-up results are stable.

3.
J Craniofac Surg ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408331

RESUMO

OBJECTIVE: This study seeks to examine the impact of anterior and posterior vault distraction osteogenesis (A-PVDO) in conjunction with 3D-printed positioning and shaping templates for the management of Apert syndrome. METHODS: From January 2018 to February 2022, a retrospective analysis was conducted on 6 cases of Apert syndrome employing fronto-orbital 3D-printed positioning and molding templates. The cranium underwent surgical modification in accordance with the template's configuration and was affixed with absorbable plates. Subsequently, distraction devices were applied, encompassing both anterior and posterior craniotomies. The evaluation encompassed clinical outcomes, complications (including cerebrospinal fluid leakage and infection), safety, and the feasibility of the distraction osteogenesis procedure. RESULTS: Six patients diagnosed with Apert syndrome underwent treatment involving the integration of fronto-orbital 3D-printed positioning and shaping templates in conjunction with anterior and posterior cranial distraction osteoplasty. Follow-up durations ranged from 18 to 32 months (average: 22 mo). No instances of fronto-orbital retraction, cerebrospinal fluid leakage, or intracranial infection were noted during the follow-up period. The sole reported complication entailed an infection at the extension rod site in 1 case. All patients conveyed satisfaction with the treatment outcomes. CONCLUSIONS: The application of 3D-printed positioning and shaping templates in tandem with anterior and posterior cranial distraction osteogenesis demonstrates efficacy in addressing Apert syndrome. Notably, significant enhancements in head shape and orbit were observed, and the incidence of postoperative complications such as cerebrospinal fluid leakage and infection remained minimal. Moreover, long-term follow-up affirmed stability.

4.
BMC Pulm Med ; 23(1): 509, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097957

RESUMO

BACKGROUND: Mechanical ventilation can cause acute atrophy and injury in the diaphragm, which are related to adverse clinical results. However, the underlying mechanisms of ventilation-induced diaphragm dysfunction (VIDD) have not been well elucidated. The current study aimed to explore the role of cellular senescence in VIDD. METHODS: A total of twelve New Zealand rabbits were randomly divided into 2 groups: (1) spontaneously breathing anaesthetized animals (the CON group) and (2) mechanically ventilated animals (for 48 h) in V-ACV mode (the MV group). Respiratory parameters were collected during ventilation. Diaphragm were collected for further analyses. RESULTS: Compared to those in the CON group, the percentage and density of sarcomere disruption in the MV group were much higher (p < 0.001, both). The mRNA expression of MAFbx and MuRF1 was upregulated in the MV group (p = 0.003 and p = 0.006, respectively). Compared to that in the CON group, the expression of MAFbx and MuRF1 detected by western blotting was also upregulated (p = 0.02 and p = 0.03, respectively). Moreover, RNA-seq showed that genes associated with senescence were remarkably enriched in the MV group. The mRNA expression of related genes was further verified by q-PCR (Pai1: p = 0.009; MMP9: p = 0.008). Transverse cross-sections of diaphragm myofibrils in the MV group showed more intensive positive staining of SA-ßGal than those in the CON group. p53-p21 axis signalling was elevated in the MV group. The mRNA expression of p53 and p21 was significantly upregulated (p = 0.02 and p = 0.05, respectively). The western blot results also showed upregulation of p53 and p21 protein expression (p = 0.03 and p = 0.05, respectively). Moreover, the p21-positive staining in immunofluorescence and immunohistochemistry in the MV group was much more intense than that in the CON group (p < 0.001, both). CONCLUSIONS: In a rabbit model, we demonstrated that mechanical ventilation in A/C mode for 48 h can still significantly induce ultrastructural damage and atrophy of the diaphragm. Moreover, p53-dependent senescence might play a role in mechanical ventilation-induced dysfunction. These findings might provide novel therapeutic targets for VIDD.


Assuntos
Diafragma , Respiração Artificial , Animais , Coelhos , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Proteína Supressora de Tumor p53/genética , Atrofia , Senescência Celular , RNA Mensageiro
5.
Gels ; 10(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38786208

RESUMO

Aerogels, as a new type of high-temperature-resistant insulation material, find extensive application in aerospace, high-temperature industrial furnaces, new energy batteries, and various other domains, yet still face some limitations such as inadequate temperature resistance and pronounced brittleness. In this work, SiC/HfC composite aerogels were prepared through a combination of sol-gel method, atmospheric pressure drying technique, and carbothermal reduction reaction. The effects of different molar ratios, calcination time, and temperatures on the microstructural features and physicochemical properties of the resulting SiC/HfC composite aerogels were investigated. The aerogel exhibited an elevated BET-specific surface area of 279.75 m2/g, while the sample displayed an extraordinarily low thermal conductivity of 0.052 W/(m·K). Most notably, the compressive strength reached an outstanding 5.93 MPa after a carbonization temperature of 1500 °C, far exceeding the values reported in prior aerogel studies. This research provided an innovative approach for advancing the development of carbide aerogels in the realm of high-temperature applications.

6.
Nat Cell Biol ; 26(6): 962-974, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839978

RESUMO

Dynamic epigenomic reprogramming occurs during mammalian oocyte maturation and early development. However, the underlying transcription circuitry remains poorly characterized. By mapping cis-regulatory elements using H3K27ac, we identified putative enhancers in mouse oocytes and early embryos distinct from those in adult tissues, enabling global transitions of regulatory landscapes around fertilization and implantation. Gene deserts harbour prevalent putative enhancers in fully grown oocytes linked to oocyte-specific genes and repeat activation. Embryo-specific enhancers are primed before zygotic genome activation and are restricted by oocyte-inherited H3K27me3. Putative enhancers in oocytes often manifest H3K4me3, bidirectional transcription, Pol II binding and can drive transcription in STARR-seq and a reporter assay. Finally, motif analysis of these elements identified crucial regulators of oogenesis, TCF3 and TCF12, the deficiency of which impairs activation of key oocyte genes and folliculogenesis. These data reveal distinctive regulatory landscapes and their interacting transcription factors that underpin the development of mammalian oocytes and early embryos.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Oócitos , Oogênese , Animais , Oócitos/metabolismo , Feminino , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Oogênese/genética , Camundongos , Histonas/metabolismo , Histonas/genética , Embrião de Mamíferos/metabolismo , Camundongos Endogâmicos C57BL , Desenvolvimento Embrionário/genética , Folículo Ovariano/metabolismo , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA