Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(2): 885-905, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38000373

RESUMO

RNA-binding proteins (RBPs) with intrinsically disordered regions (IDRs) are linked to multiple human disorders, but their mechanisms of action remain unclear. Here, we report that one such protein, Nocte, is essential for Drosophila eye development by regulating a critical gene expression cascade at translational level. Knockout of nocte in flies leads to lethality, and its eye-specific depletion impairs eye size and morphology. Nocte preferentially enhances translation of mRNAs with long upstream open reading frames (uORFs). One of the key Nocte targets, glass mRNA, encodes a transcription factor critical for differentiation of photoreceptor neurons and accessory cells, and re-expression of Glass largely rescued the eye defects caused by Nocte depletion. Mechanistically, Nocte counteracts long uORF-mediated translational suppression by promoting translation reinitiation downstream of the uORF. Nocte interacts with translation factors eIF3 and Rack1 through its BAT2 domain, and a Nocte mutant lacking this domain fails to promote translation of glass mRNA. Notably, de novo mutations of human orthologs of Nocte have been detected in schizophrenia patients. Our data suggest that Nocte family of proteins can promote translation reinitiation to overcome long uORFs-mediated translational suppression, and disruption of this function can lead to developmental defects and neurological disorders.


Assuntos
Drosophila , Proteínas de Ligação a RNA , Animais , Humanos , Regiões 5' não Traduzidas , Drosophila/genética , Drosophila/metabolismo , Fases de Leitura Aberta/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
2.
Nucleic Acids Res ; 50(12): 7013-7033, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35748872

RESUMO

Topoisomerase 3ß (TOP3B) and TDRD3 form a dual-activity topoisomerase complex that interacts with FMRP and can change the topology of both DNA and RNA. Here, we investigated the post-transcriptional influence of TOP3B and associated proteins on mRNA translation and turnover. First, we discovered that in human HCT116 colon cancer cells, knock-out (KO) of TOP3B had similar effects on mRNA turnover and translation as did TDRD3-KO, while FMRP-KO resulted in rather distinct effects, indicating that TOP3B had stronger coordination with TDRD3 than FMRP in mRNA regulation. Second, we identified TOP3B-bound mRNAs in HCT116 cells; we found that while TOP3B did not directly influence the stability or translation of most TOP3B target mRNAs, it stabilized a subset of target mRNAs but had a more complex effect on translation-enhancing for some mRNAs whereas reducing for others. Interestingly, a point mutation that specifically disrupted TOP3B catalytic activity only partially recapitulated the effects of TOP3B-KO on mRNA stability and translation, suggesting that the impact of TOP3B on target mRNAs is partly linked to its ability to change topology of mRNAs. Collectively, our data suggest that TOP3B-TDRD3 can regulate mRNA translation and turnover by mechanisms that are dependent and independent of topoisomerase activity.


Assuntos
Biossíntese de Proteínas , Proteínas , Humanos , RNA Mensageiro/genética
3.
Mol Cell ; 47(1): 61-75, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22705371

RESUMO

The Fanconi anemia (FA) protein network is necessary for repair of DNA interstrand crosslinks (ICLs), but its control mechanism remains unclear. Here we show that the network is regulated by a ubiquitin signaling cascade initiated by RNF8 and its partner, UBC13, and mediated by FAAP20, a component of the FA core complex. FAAP20 preferentially binds the ubiquitin product of RNF8-UBC13, and this ubiquitin-binding activity and RNF8-UBC13 are both required for recruitment of FAAP20 to ICLs. Both RNF8 and FAAP20 are required for recruitment of FA core complex and FANCD2 to ICLs, whereas RNF168 can modulate efficiency of the recruitment. RNF8 and FAAP20 are needed for efficient FANCD2 monoubiquitination, a key step of the FA network; RNF8 and the FA core complex work in the same pathway to promote cellular resistance to ICLs. Thus, the RNF8-FAAP20 ubiquitin cascade is critical for recruiting FA core complex to ICLs and for normal function of the FA network.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Ubiquitinação , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/química , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Lisina/química , Lisina/genética , Lisina/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
Nucleic Acids Res ; 45(5): 2704-2713, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28039324

RESUMO

Human cells contain five topoisomerases in the nucleus and cytoplasm, but which one is the major topoisomerase for mRNAs is unclear. To date, Top3ß is the only known topoisomerase that possesses RNA topoisomerase activity, binds mRNA translation machinery and interacts with an RNA-binding protein, FMRP, to promote synapse formation; and Top3ß gene deletion has been linked to schizophrenia. Here, we show that Top3ß is also the most abundant mRNA-binding topoisomerase in cells. Top3ß, but not other topoisomerases, contains a distinctive RNA-binding domain; and deletion of this domain diminishes the amount of Top3ß that associates with mRNAs, indicating that Top3ß is specifically targeted to mRNAs by its RNA binding domain. Moreover, Top3ß mutants lacking either its RNA-binding domain or catalytic residue fail to promote synapse formation, suggesting that Top3ß requires both its mRNA-binding and catalytic activity to facilitate neurodevelopment. Notably, Top3ß proteins bearing point mutations from schizophrenia and autism individuals are defective in association with FMRP; whereas one of the mutants is also deficient in binding mRNAs, catalyzing RNA topoisomerase reaction, and promoting synapse formation. Our data suggest that Top3ß is the major topoisomerase for mRNAs, and requires both RNA binding and catalytic activity to promote neurodevelopment and prevent mental dysfunction.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , RNA Mensageiro/metabolismo , Sinapses/fisiologia , Animais , Transtorno Autístico/genética , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/genética , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Células HEK293 , Humanos , Junção Neuromuscular/crescimento & desenvolvimento , Mutação Puntual , Domínios Proteicos , Esquizofrenia/genética
5.
Nucleic Acids Res ; 44(13): 6335-49, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27257063

RESUMO

DNA Topoisomerases are essential to resolve topological problems during DNA metabolism in all species. However, the prevalence and function of RNA topoisomerases remain uncertain. Here, we show that RNA topoisomerase activity is prevalent in Type IA topoisomerases from bacteria, archaea, and eukarya. Moreover, this activity always requires the conserved Type IA core domains and the same catalytic residue used in DNA topoisomerase reaction; however, it does not absolutely require the non-conserved carboxyl-terminal domain (CTD), which is necessary for relaxation reactions of supercoiled DNA. The RNA topoisomerase activity of human Top3ß differs from that of Escherichia coli topoisomerase I in that the former but not the latter requires the CTD, indicating that topoisomerases have developed distinct mechanisms during evolution to catalyze RNA topoisomerase reactions. Notably, Top3ß proteins from several animals associate with polyribosomes, which are units of mRNA translation, whereas the Top3 homologs from E. coli and yeast lack the association. The Top3ß-polyribosome association requires TDRD3, which directly interacts with Top3ß and is present in animals but not bacteria or yeast. We propose that RNA topoisomerases arose in the early RNA world, and that they are retained through all domains of DNA-based life, where they mediate mRNA translation as part of polyribosomes in animals.


Assuntos
DNA Topoisomerases Tipo I/genética , Evolução Molecular , Polirribossomos/genética , Proteínas/genética , Sequência de Aminoácidos/genética , Domínio Catalítico/genética , DNA Super-Helicoidal/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos , RNA/genética , RNA Mensageiro/genética , Homologia de Sequência de Aminoácidos
6.
J Neurosci ; 31(39): 13921-35, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21957254

RESUMO

The SRY-box (Sox) transcription factors regulate oligodendrocyte differentiation, but their signaling targets are largely unknown. We have identified a major signal transduction pathway regulated by Sox containing gene 17 (Sox17) in the oligodendrocyte lineage. Microarray analysis in oligodendrocyte progenitor cells (OPCs) after Sox17 attenuation revealed upregulated genes associated with cell cycle control and activation of the Wingless and integration site (Wnt)/ß-catenin pathway. Sox17 knockdown also increases the levels of cyclin D1, Axin2, and activated ß-catenin. In OPCs, the expression pattern of Sox17, cyclin D1, and secreted Frizzled-related protein-1 in the presence of platelet-derived growth factor (PDGF) was coordinately accelerated by addition of thyroid hormone, indicating differentiation-induced regulation of Sox17 targets. In developing white matter, decreased total ß-catenin, activated ß-catenin, and cyclin D1 levels coincided with the peak of Sox17 expression, and immunoprecipitates showed a developmentally regulated interaction among Sox17, T-cell transcription factor 4, and ß-catenin proteins. In OPCs, PDGF stimulated phosphorylation of glycogen synthase 3ß and the Wnt coreceptor LRP6, and enhanced ß-catenin-dependent gene expression. Sox17 overexpression inhibited PDGF-induced TOPFLASH and cyclin D1 promoter activity, and decreased endogenous cyclin D1, activated ß-catenin, as well as total ß-catenin levels. Recombinant Sox17 prevented Wnt3a from repressing myelin protein expression, and inhibition of Sox17-mediated proteasomal degradation of ß-catenin blocked myelin protein induction. These results indicate that Sox17 suppresses cyclin D1 expression and cell proliferation by directly antagonizing ß-catenin, whose activity in OPCs is stimulated not only by Wnt3a, but also by PDGF. Our identification of downstream targets of Sox17 thus defines signaling pathways and molecular mechanisms in OPCs that are regulated by Sox17 during cell cycle exit and the onset of differentiation in oligodendrocyte development.


Assuntos
Proteínas HMGB/fisiologia , Oligodendroglia/fisiologia , Fatores de Transcrição SOXF/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Proteínas Wnt/fisiologia , beta Catenina/fisiologia , Animais , Células Cultivadas , Técnicas de Introdução de Genes , Proteínas HMGB/antagonistas & inibidores , Proteínas HMGB/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas da Mielina/antagonistas & inibidores , Proteínas da Mielina/biossíntese , Células NIH 3T3 , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Fatores de Transcrição SOXF/antagonistas & inibidores , Fatores de Transcrição SOXF/genética , beta Catenina/antagonistas & inibidores
7.
Cancer Cell ; 4(3): 197-207, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14522254

RESUMO

MLL fusion proteins are leukemogenic, but their mechanism is unclear. Induced dimerization of a truncated MLL immortalizes bone marrow and imposes a reversible block on myeloid differentiation associated with upregulation of Hox a7, a9, and Meis1. Both dimerized MLL and exon-duplicated MLL are potent transcriptional activators, suggesting a link between dimerization and partial tandem duplication of DNA binding domains of MLL. Dimerized MLL binds with higher affinity than undimerized MLL to a CpG island within the Hox a9 locus. However, MLL-AF9 is not dimerized in vivo. The data support a model in which either MLL dimerization/exon duplication or fusion to a transcriptional activator results in Hox gene upregulation and ultimately transformation.


Assuntos
Sobrevivência Celular/fisiologia , Transformação Celular Neoplásica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Sistema Hematopoético/patologia , Proteínas de Fusão Oncogênica/metabolismo , Proto-Oncogenes , Fatores de Transcrição , Animais , Células da Medula Óssea/metabolismo , Células Cultivadas , Cricetinae , Cricetulus , Dimerização , Regulação Leucêmica da Expressão Gênica , Sistema Hematopoético/metabolismo , Histona-Lisina N-Metiltransferase , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Proteína Meis1 , Proteína de Leucina Linfoide-Mieloide , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Retroviridae , Transativadores/metabolismo
8.
Antiviral Res ; 208: 105451, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36328071

RESUMO

A recent study demonstrated that a DNA-RNA dual-activity topoisomerase complex, TOP3B-TDRD3, is required for normal replication of positive-sense RNA viruses, including several human flaviviruses and coronaviruses; and the authors proposed that TOP3B is a target of antiviral drugs. Here we examined this hypothesis by investigating whether inactivation of Top3b can inhibit the replication of a mouse coronavirus, MHV, using cell lines and mice that are inactivated of Top3b or Tdrd3. We found that Top3b-KO or Tdrd3-KO cell lines generated by different CRISPR-CAS9 guide RNAs have variable effects on MHV replication. In addition, we did not find significant changes of MHV replication in brains or lungs in Top3B-KO mice. Moreover, immunostaining showed that Top3b proteins are not co-localized with MHV replication complexes but rather, localized in stress granules in the MHV-infected cells. Our results suggest that Top3b does not have a universal role in promoting replication of positive-sense RNA virus, and cautions should be taken when targeting it to develop anti-viral drugs.


Assuntos
Infecções por Coronavirus , Coronavirus , Vírus da Hepatite Murina , Vírus de RNA , Animais , Camundongos , Antivirais/farmacologia , Linhagem Celular , Coronavirus/genética , Infecções por Coronavirus/tratamento farmacológico , Vírus da Hepatite Murina/genética , Vírus da Hepatite Murina/metabolismo , Proteínas , RNA Viral/genética , RNA Viral/metabolismo , Replicação Viral
9.
Immunology ; 132(1): 134-43, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20875076

RESUMO

Tumour pathogenesis is characterized by an immunosuppressive microenvironment that limits the development of effective tumour-specific immune responses. This is in part the result of tumour-dependent recruitment and activation of regulatory cells, such as myeloid-derived suppressor cells and regulatory T cells in the tumour microenvironment and draining lymph nodes. Shedding of gangliosides by tumour cells has immunomodulatory properties, suggesting that gangliosides may be a critical factor in initiating an immunosuppressive microenvironment. To better define the immunomodulatory properties of gangliosides on antigen-specific T-cell activation and development we have developed an in vitro system using ganglioside-treated murine bone-marrow-derived dendritic cells to prime and activate antigen-specific CD4(+) T cells from AND T-cell receptor transgenic mice. Using this system, ganglioside treatment promotes the development of a dendritic cell population characterized by decreased CD86 (B7-2) expression, and decreased interleukin-12 and interleukin-6 production. When these cells are used as antigen-presenting cells, CD4 T cells are primed to proliferate normally, but have a defect in T helper (Th) effector cell development. This defect in Th effector cell responses is associated with the development of regulatory T-cell activity that can suppress the activation of previously primed Th effector cells in a contact-dependent manner. In total, these data suggest that ganglioside-exposed dendritic cells promote regulatory T-cell activity that may have long-lasting effects on the development of tumour-specific immune responses.


Assuntos
Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Gangliosídeos/farmacologia , Linfócitos T Reguladores/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Reguladores/citologia
10.
Biol Open ; 10(8)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34296248

RESUMO

Steroid hormones influence diverse biological processes throughout the animal life cycle, including metabolism, stress resistance, reproduction, and lifespan. In insects, the steroid hormone, 20-hydroxyecdysone (20E), is the central hormone regulator of molting and metamorphosis, and plays roles in tissue morphogenesis. For example, amnioserosa contraction, which is a major driving force in Drosophila dorsal closure (DC), is defective in embryos mutant for 20E biosynthesis. Here, we show that 20E signaling modulates the transcription of several DC participants in the amnioserosa and other dorsal tissues during late embryonic development, including zipper, which encodes for non-muscle myosin. Canonical ecdysone signaling typically involves the binding of Ecdysone receptor (EcR) and Ultraspiracle heterodimers to ecdysone-response elements (EcREs) within the promoters of responsive genes to drive expression. During DC, however, we provide evidence that 20E signaling instead acts in parallel to the JNK cascade via a direct interaction between EcR and the AP-1 transcription factor subunit, Jun, which together binds to genomic regions containing AP-1 binding sites but no EcREs to control gene expression. Our work demonstrates a novel mode of action for 20E signaling in Drosophila that likely functions beyond DC, and may provide further insights into mammalian steroid hormone receptor interactions with AP-1.


Assuntos
Drosophila/embriologia , Ecdisterona/metabolismo , Morfogênese , Transdução de Sinais , Animais , Epiderme/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Metamorfose Biológica , Subunidades Proteicas , Fator de Transcrição AP-1/metabolismo
11.
Nat Commun ; 11(1): 3143, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561719

RESUMO

Topoisomerase 3ß (Top3ß) is the only dual-activity topoisomerase in animals that can change topology for both DNA and RNA, and facilitate transcription on DNA and translation on mRNAs. Top3ß mutations have been linked to schizophrenia, autism, epilepsy, and cognitive impairment. Here we show that Top3ß knockout mice exhibit behavioural phenotypes related to psychiatric disorders and cognitive impairment. The mice also display impairments in hippocampal neurogenesis and synaptic plasticity. Notably, the brains of the mutant mice exhibit impaired global neuronal activity-dependent transcription in response to fear conditioning stress, and the affected genes include many with known neuronal functions. Our data suggest that Top3ß is essential for normal brain function, and that defective neuronal activity-dependent transcription may be a mechanism by which Top3ß deletion causes cognitive impairment and psychiatric disorders.


Assuntos
Disfunção Cognitiva/genética , DNA Topoisomerases Tipo I/genética , Transtornos Mentais/genética , Neurogênese/genética , Plasticidade Neuronal/genética , Animais , Técnicas de Observação do Comportamento , Comportamento Animal , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Feminino , Hipocampo/citologia , Hipocampo/diagnóstico por imagem , Hipocampo/crescimento & desenvolvimento , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos Mentais/diagnóstico , Transtornos Mentais/patologia , Camundongos , Camundongos Knockout , Neurônios/patologia , Técnicas Estereotáxicas , Potenciais Sinápticos/genética , Transcrição Gênica/fisiologia
12.
Nat Commun ; 9(1): 4946, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470739

RESUMO

Topoisomerases solve topological problems during DNA metabolism, but whether they participate in RNA metabolism remains unclear. Top3ß represents a family of topoisomerases carrying activities for both DNA and RNA. Here we show that in Drosophila, Top3ß interacts biochemically and genetically with the RNAi-induced silencing complex (RISC) containing AGO2, p68 RNA helicase, and FMRP. Top3ß and RISC mutants are similarly defective in heterochromatin formation and transcriptional silencing by position-effect variegation assay. Moreover, both Top3ß and AGO2 mutants exhibit reduced levels of heterochromatin protein HP1 in heterochromatin. Furthermore, expression of several genes and transposable elements in heterochromatin is increased in the Top3ß mutant. Notably, Top3ß mutants defective in either RNA binding or catalytic activity are deficient in promoting HP1 recruitment and silencing of transposable elements. Our data suggest that Top3ß may act as an RNA topoisomerase in siRNA-guided heterochromatin formation and transcriptional silencing.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Drosophila melanogaster/enzimologia , Heterocromatina/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA Topoisomerases Tipo I/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Heterocromatina/genética , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno , Complexo de Inativação Induzido por RNA/genética
13.
Cancer Res ; 63(15): 4315-21, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12907597

RESUMO

Comparison of gene expressing profiles between gliomas with different grades revealed frequent overexpression of insulin-like growth factor binding protein 2 (IGFBP2) in glioblastoma (GBM), the most advanced stage of glioma. To determine whether IGFBP2 is involved in the proliferative and invasive nature of GBM, we established stable SNB19 GBM cell lines that overexpress IGFBP2. Although there was no marked difference in the cell growth between IGFBP2 overexpressing SNB19(BP2) lines when compared with the control cells, these clones showed significantly increased invasive rates when compared with the parental or vector transfected SNB19 cells. Total RNAs from controls and SNB19(BP2) clones were used for microarray analysis to detect IGFBP2-mediated alterations in gene expression. When compared with parental or vector-transfected control cells, SNB19(BP2) cells consistently showed 3-5-fold increase in the expression of matrix metalloproteinase-2 (MMP-2) as well as other invasion related genes. Increased MMP-2 expression in SNB19(BP2) cells was subsequently confirmed by real time reverse-transcription PCR, Western blotting, and gelatin zymography. Furthermore, consistent with increased MMP-2 expression in SNB19(BP2) cells, transient transfection of a MMP-2 promoter/luciferase reporter also resulted in 3-6-fold higher luciferase activity in SNB19(BP2) cells than in parental or vector-transfected control cells. Finally, tissue microarray analysis of 68 GBM tissue specimens showed a significant correlation between the overexpression of IGFBP2 and elevated MMP-2 expression. Taken together, our data provide evidence that IGFBP2 contributes to glioma progression in part by enhancing MMP-2 gene transcription and in turn tumor cell invasion.


Assuntos
Glioblastoma/genética , Glioblastoma/patologia , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Humanos , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/biossíntese , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 2 da Matriz/genética , Invasividade Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Transfecção , Células Tumorais Cultivadas
14.
Int J Biol Macromol ; 89: 376-88, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27151672

RESUMO

In the current study, we analyzed the functions and mechanisms of Bletilla striata polysaccharide b (BSPb) against Angiotensin II (Ang II)-induced oxidative stress and inflammation in human mesangial cells (HMCs). It was found that BSPb could inhibit generation of Ang II-induced reactive oxygen species (ROS) and activation of proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in a dose-dependent manner. Further studies revealed that BSPb effectively blocked upregulation of NADPH oxidase 4 (NOX4). Moreover, knockdown of NOX4 significantly impaired the anti-oxidative function of BSPb. In addition, BSPb decreased overexpression of Toll-like receptor 2 (TLR2) induced by Ang II. Blocking TLR2 expression impaired the anti-inflammatory effects of BSPb. In conclusion, BSPb was found to possess anti-oxidative stress and anti-inflammatory functions against Ang II-induced ROS generation and proinflammatory cytokines activation. The NOX4 and TLR2 pathways played important roles in the biological effects mediated by BSPb.


Assuntos
Inflamação/tratamento farmacológico , NADPH Oxidases/genética , Extratos Vegetais/administração & dosagem , Polissacarídeos/administração & dosagem , Receptor 2 Toll-Like/genética , Angiotensina II/efeitos dos fármacos , Angiotensina II/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Inflamação/patologia , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , NADPH Oxidase 4 , NADPH Oxidases/biossíntese , Orchidaceae/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Polissacarídeos/química , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/biossíntese
15.
Proteome Sci ; 3(1): 3, 2005 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-15904526

RESUMO

BACKGROUND: Protein expression in E. coli is the most commonly used system to produce protein for structural studies, because it is fast and inexpensive and can produce large quantity of proteins. However, when proteins from other species such as mammalian are produced in this system, problems of protein expression and solubility arise 1. Structural genomics project are currently investigating proteomics pipelines that would produce sufficient quantities of recombinant proteins for structural studies of protein complexes. To investigate how the E. coli protein expression system could be used for this purpose, we purified apoptotic binary protein complexes formed between members of the Caspase Associated Recruitment Domain (CARD) family. RESULTS: A combinatorial approach to the generation of protein complexes was performed between members of the CARD domain protein family that have the ability to form hetero-dimers between each other. In our method, each gene coding for a specific protein partner is cloned in pET-28b (Novagen) and PGEX2T (Amersham) expression vectors. All combinations of protein complexes are then obtained by reconstituting complexes from purified components in native conditions, after denaturation-renaturation or co-expression. Our study applied to 14 soluble CARD domain proteins revealed that co-expression studies perform better than native and denaturation-renaturation methods. In this study, we confirm existing interactions obtained in vivoin mammalian cells and also predict new interactions. CONCLUSION: The simplicity of this screening method could be easily scaled up to identify soluble protein complexes for structural genomic projects. This study reports informative statistics on the solubility of human protein complexes expressed in E.coli belonging to the human CARD protein family.

16.
Cancer Biol Ther ; 2(5): 572-8, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14614330

RESUMO

5-fluorouracil (5-FU) is the major chemotherapeutic agent for treatment of colorectal carcinoma, but the molecular mechanisms of response and resistance are not understood completely. We therefore studied the 5-FU dose response and time course of gene expression transcriptome changes in colon carcinoma cell lines that are relatively sensitive to or resistant to 5-FU (RKO and HT29, respectively. We identified cellular pathways and corroborated functions of selected pathways. Expression of genes for polyamine biosynthesis, i.e., ornithine decarboxylase (ODC) and spermine and spermidine synthases, was repressed in the sensitive line, while the biosynthesis-inhibiting gene ODC antizyme was induced in the resistant line. The rate-limiting gene in catabolism, spermine/spermidine acetyltransferase, was induced in both lines. Polyamine levels showed corresponding drastic decreases after 5-FU treatment, and polyamine replenishment interfered with 5-FU-induced apoptosis. In the sensitive cells which have wild-type p53, the p53 gene and its downstream genes including p21/WAF1, mdm2, Fas, mic-1, EphA2, and ferredoxin reductase as well as genes in the tumor necrosis factor (TNF) pathway including TNF receptor 2 (TNFR2) were induced, but not Fas ligand (FasL). Exposure to exogenous FasL increased 5-FU-induced apoptosis, and anti-TNFR2 antibody, but not anti-TNFR1, partially protected the sensitive cells. Our combination of gene expression profiling and corroborative functional studies revealed that reduced polyamine levels, non-autocrine FasL originating exogenous to tumor cells, and induced TNFR2 are all functional mediators of apoptosis caused by 5-FU in colon carcinoma cells.


Assuntos
Antígenos CD/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias do Colo/patologia , Fluoruracila/farmacologia , Poliaminas/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Receptor fas/metabolismo , Acetiltransferases/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Perfilação da Expressão Gênica , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ornitina Descarboxilase/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral , Espermidina Sintase/metabolismo , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo
17.
PLoS One ; 8(4): e60180, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23579691

RESUMO

During Drosophila embryogenesis the process of dorsal closure (DC) results in continuity of the embryonic epidermis, and DC is well recognized as a model system for the analysis of epithelial morphogenesis as well as wound healing. During DC the flanking lateral epidermal sheets stretch, align, and fuse along the dorsal midline, thereby sealing a hole in the epidermis occupied by an extra-embryonic tissue known as the amnioserosa (AS). Successful DC requires the regulation of cell shape change via actomyosin contractility in both the epidermis and the AS, and this involves bidirectional communication between these two tissues. We previously demonstrated that transcriptional regulation of myosin from the zipper (zip) locus in both the epidermis and the AS involves the expression of Ack family tyrosine kinases in the AS in conjunction with Dpp secreted from the epidermis. A major function of Ack in other species, however, involves the negative regulation of Egfr. We have, therefore, asked what role Egfr might play in the regulation of DC. Our studies demonstrate that Egfr is required to negatively regulate epidermal expression of dpp during DC. Interestingly, we also find that Egfr signaling in the AS is required to repress zip expression in both the AS and the epidermis, and this may be generally restrictive to the progression of morphogenesis in these tissues. Consistent with this theme of restricting morphogenesis, it has previously been shown that programmed cell death of the AS is essential for proper DC, and we show that Egfr signaling also functions to inhibit or delay AS programmed cell death. Finally, we present evidence that Ack regulates zip expression by promoting the endocytosis of Egfr in the AS. We propose that the general role of Egfr signaling during DC is that of a braking mechanism on the overall progression of DC.


Assuntos
Drosophila/embriologia , Drosophila/genética , Receptores ErbB/genética , Morfogênese/genética , Alelos , Animais , Apoptose/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrião não Mamífero/metabolismo , Endocitose/genética , Células Epidérmicas , Epiderme/embriologia , Epiderme/metabolismo , Receptores ErbB/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/genética , Modelos Biológicos , Cadeias Pesadas de Miosina/genética , Proteínas Tirosina Quinases/genética , Transdução de Sinais
18.
Nat Neurosci ; 16(9): 1238-47, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23912945

RESUMO

Topoisomerases are crucial for solving DNA topological problems, but they have not been linked to RNA metabolism. Here we show that human topoisomerase 3ß (Top3ß) is an RNA topoisomerase that biochemically and genetically interacts with FMRP, a protein that is deficient in fragile X syndrome and is known to regulate the translation of mRNAs that are important for neuronal function, abnormalities of which are linked to autism. Notably, the FMRP-Top3ß interaction is abolished by a disease-associated mutation of FMRP, suggesting that Top3ß may contribute to the pathogenesis of mental disorders. Top3ß binds multiple mRNAs encoded by genes with neuronal functions linked to schizophrenia and autism. Expression of one such gene, that encoding protein tyrosine kinase 2 (ptk2, also known as focal adhesion kinase or FAK), is reduced in the neuromuscular junctions of Top3ß mutant flies. Synapse formation is defective in Top3ß mutant flies and mice, as well as in FMRP mutant flies and mice. Our findings suggest that Top3ß acts as an RNA topoisomerase and works with FMRP to promote the expression of mRNAs that are crucial for neurodevelopment and mental health.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Junção Neuromuscular/genética , Animais , Animais Geneticamente Modificados , Células Cultivadas , Galinhas , DNA Topoisomerases Tipo I/deficiência , DNA Topoisomerases Tipo I/genética , Drosophila , Proteínas de Drosophila/genética , Embrião de Mamíferos , Olho/citologia , Olho/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/genética , Neurônios/fisiologia , Proteínas de Ligação a RNA/metabolismo , Transfecção
19.
Ying Yong Sheng Tai Xue Bao ; 23(4): 867-74, 2012 Apr.
Artigo em Zh | MEDLINE | ID: mdl-22803447

RESUMO

The changes in organic carbon content in different sized soil particles under different land use patterns partly reflect the variation of soil carbon, being of significance in revealing the process of soil organic carbon cycle. Based on the long-term monitoring of soil erosion, and by the methods of soil particle size fractionation, this paper studied the effects of different land use types (wasteland, pinewood land, and grassland) on the distribution of organic carbon content in different sized soil particles and its relationships to the herb biomass. Land use type and slope position had obvious effects on the organic carbon content in different sized soil particles, and the organic carbon content was in the order of grassland > pinewood land > wasteland. The proportion of the organic carbon in different sized soil particles was mainly depended on the land use type, and had little relationships with slope position. According to the analysis of the ratio of particle-associated organic carbon to mineral-associated organic carbon (POC/MOC), the soil organic carbon in grassland was easily to be mineralized, whereas that in wasteland and pinewood land was relatively stable. On the slopes mainly in hilly red soil region, the soil organic carbon in sand fraction had great effects on herb biomass.


Assuntos
Carbono/análise , Ecossistema , Poaceae/crescimento & desenvolvimento , Solo/análise , Árvores/crescimento & desenvolvimento , Biomassa , China , Compostos Orgânicos/análise , Tamanho da Partícula
20.
J Immunol ; 180(7): 4425-32, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18354163

RESUMO

Gangliosides, sialic acid-containing glycosphingolipids present in the outer leaflet of plasma membranes, are produced at high levels by some tumors, are actively shed into the tumor microenvironment, and can be detected in high concentrations in the serum of cancer patients. These tumor-shed molecules are known to be immunosuppressive, although mechanisms remain to be fully elucidated. In this study, we show that membrane enrichment of human monocytes with purified exogenous gangliosides potently inhibits ligand-induced activation and proinflammatory cytokine production induced by a broad range of TLRs, including TLR2, TLR3, TLR6, and TLR7/8, in addition to a previously identified inhibitory effect on TLR4 and TLR5. Inhibition of TLR activation is reversible, with complete restoration of TLR signaling within 6-24 h of washout of exogenous gangliosides, and is selective for certain gangliosides (GM1, GD1a, and GD1b), whereas others (GM3) are inactive. To characterize the inhibition, we assessed the expression of the TLR signaling pathway inhibitor, IL-1 receptor associated kinase-M (IRAK-M). In response to ganglioside enrichment alone, we observed striking up-regulation of IRAK-M in monocytes, but without concomitant proinflammatory cytokine production. This contrasts with endotoxin tolerance, in which IRAK-M up-regulation follows proinflammatory cytokine expression caused by LPS exposure. We hypothesize that ganglioside treatment induces a state of tolerance to TLR signaling, leading to blunted activation of innate immune responses. In the tumor microenvironment, shed tumor ganglioside enrichment of APC membranes may likewise cause these cells to bypass the normal TLR signaling response and progress directly to the inhibitory state.


Assuntos
Gangliosídeos/farmacologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo , Regulação para Cima/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Citocinas/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Ligantes , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA