Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nat Mater ; 23(6): 844-853, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38448658

RESUMO

Lymph nodes are crucial organs of the adaptive immune system, orchestrating T cell priming, activation and tolerance. T cell activity and function are highly regulated by lymph nodes, which have a unique structure harbouring distinct cells that work together to detect and respond to pathogen-derived antigens. Here we show that implanted patient-derived freeze-dried lymph nodes loaded with chimeric antigen receptor T cells improve delivery to solid tumours and inhibit tumour recurrence after surgery. Chimeric antigen receptor T cells can be effectively loaded into lyophilized lymph nodes, whose unaltered meshwork and cytokine and chemokine contents promote chimeric antigen receptor T cell viability and activation. In mouse models of cell-line-derived human cervical cancer and patient-derived pancreatic cancer, delivery of chimeric antigen receptor T cells targeting mesothelin via the freeze-dried lymph nodes is more effective in preventing tumour recurrence when compared to hydrogels containing T-cell-supporting cytokines. This tissue-mediated cell delivery strategy holds promise for controlled release of various cells and therapeutics with long-term activity and augmented function.


Assuntos
Liofilização , Linfonodos , Mesotelina , Receptores de Antígenos Quiméricos , Animais , Humanos , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfonodos/imunologia , Linfócitos T/imunologia , Linfócitos T/citologia , Linhagem Celular Tumoral , Feminino , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia
2.
J Cell Mol Med ; 28(3): e18088, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38146591

RESUMO

Lysosomal dysfunction can drive carcinogenesis. Lysosomal-associated membrane protein 3 (LAMP3), is a member of the Lysosome Associated Membrane Proteins and is involved in the malignant phenotype such as tumour metastasis and drug resistance, while the mechanisms that regulate the malignant progression of tumour remain vague. Our study aims to provide a more systematic and comprehensive understanding of the role of LAMP3 in the progression of various cancers by various databases.We explored the role of LAMP3 in pan-cancer using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) database. Multiple online web platforms and software were used for data analysis, including HPA, TIMER, TISIDB, GEPIA, UALCAN, Kaplan-Meier plotter, DAVID and TIGER. The immunohistochemistry was used to quantify the LAMP3 and PD-L1 expression levels in cancer.High LAMP3 expression was found in most cancers and differentially expressed across molecular and immune subtypes. The expression of LAMP3 was involved in the immune-associated processes of Antigen processing and presentation, Th17 cell differentiation, Th1 and Th2 cell differentiation, and the immune-associated pathways of T cell receptor and B cell receptor signalling pathways in most cancers. It also correlated with genetic markers of immunomodulators in various cancers. LAMP3 and PD-L1 expression in BRCA and HNSC tissues was higher than that in corresponding adjacent normal tissues by immunohistochemistry. There is a significant correlation between the expression of LAMP3 and PD-L1.Our study elucidates that LAMP3 has different expression patterns and genetic alteration patterns in different tumours. It is a potential biomarker for immune-related cancer diagnosis, prognosis and efficacy prediction.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Proteína 3 de Membrana Associada ao Lisossomo , Prognóstico , Proteínas de Membrana Lisossomal
3.
Angew Chem Int Ed Engl ; : e202403541, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885002

RESUMO

The exploration of cell-based drug delivery systems for cancer therapy has gained growing attention. Approaches to engineering therapeutic cells with multidrug loading in an effective, safe, and precise manner while preserving their inherent biological properties remain of great interest. Here, we report a strategy to simultaneously load multiple drugs in platelets in a one-step fusion process. We demonstrate doxorubicin (DOX)-encapsulated liposomes conjugated with interleukin-15 (IL-15) could fuse with platelets to achieve both cytoplasmic drug loading and surface cytokine modification with a loading efficiency of over 70 % within minutes. Due to their inherent targeting ability to metastatic cancers and postoperative bleeding sites, the engineered platelets demonstrated a synergistic therapeutic effect to suppress lung metastasis and postoperative recurrence in mouse B16F10 melanoma tumor models.

4.
J Am Chem Soc ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36661845

RESUMO

The synthesis of structurally diverse amines is of fundamental significance in the pharmaceutical industry due to the ubiquitous presence of amine motifs in biologically active molecules. Biocatalytic reductive amination for amine production has attracted great interest owing to its synthetic advantages. Herein, we report the direct synthesis of a wide range of sterically demanding secondary amines, including several important active pharmaceutical ingredients and pharmaceutical intermediates, via reductive amination of carbonyl substrates and bulky amine nucleophiles employing imine reductases. Key to success for this route is the identification of an imine reductase from Penicillium camemberti with unusual substrate specificity and its further engineering, which empowered the accommodation of a broad range of sterically demanding amine nucleophiles encompassing linear alkyl and (hetero)aromatic (oxy)alkyl substituents and the formation of final amine products with up to >99% conversion. The practical utility of the biocatalytic route has been demonstrated by its application in the preparative synthesis of the anti-hyperparathyroidism drug cinacalcet.

5.
Cell Biol Int ; 38(2): 239-45, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24154981

RESUMO

The human ERG protein (HERG or Kv 11.1) encoded by the human ether-a-go-go-related gene (herg) is the pore-forming subunit of the cardiac delayed rectifier potassium current (IKr) responsible for action potential (AP) repolarization. Mutations in HERG lead to long-QT syndrome, a major cause of arrhythmias. Protein-protein interactions are fundamental for ion channel trafficking, membrane localization, and functional modulation. To identify proteins involved in the regulation of the HERG channel, we conducted a yeast two-hybrid screen of a human heart cDNA library using the C-terminus or N-terminus of HERG as bait. Fifteen proteins were identified as HERG amino terminal (HERG-NT)-interacting proteins, including Caveolin-1 (a membrane scaffold protein with multiple interacting partners, including G-proteins, kinases and NOS), the zinc finger protein, FHL2 and PTPN12 (a non-receptor tyrosine phosphatase). Eight HERG carboxylic terminal (HERG-CT)-interacting proteins were also identified, including the NF-κB-interacting protein myotrophin, We have identified multiple potential interacting proteins that may regulate cardiac IKr through cytoskeletal interactions, G-protein modulation, phosphorylation and downstream second messenger and transcription cascades. These findings provide further insight into dynamic modulation of HERG under physiological conditions and arrhythmogenesis.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Miocárdio/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Ligação Proteica
6.
Bioact Mater ; 33: 377-395, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38059121

RESUMO

Chimeric antigen receptor T cell denoted as CAR-T therapy has realized incredible therapeutic advancements for B cell malignancy treatment. However, its therapeutic validity has yet to be successfully achieved in solid tumors. Different from hematological cancers, solid tumors are characterized by dysregulated blood vessels, dense extracellular matrix, and filled with immunosuppressive signals, which together result in CAR-T cells' insufficient infiltration and rapid dysfunction. The insufficient recognition of tumor cells and tumor heterogeneity eventually causes cancer reoccurrences. In addition, CAR-T therapy also raises safety concerns, including potential cytokine release storm, on-target/off-tumor toxicities, and neuro-system side effects. Here we comprehensively review various targeting aspects, including CAR-T cell design, tumor modulation, and delivery strategy. We believe it is essential to rationally design a combinatory CAR-T therapy via constructing optimized CAR-T cells, directly manipulating tumor tissue microenvironments, and selecting the most suitable delivery strategy to achieve the optimal outcome in both safety and efficacy.

7.
J Neuroimmunol ; 377: 578068, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36948094

RESUMO

Neuropathic pain seriously affects people's life, but its mechanism is not clear. Interleukin-17 (IL-17) is a proinflammation cytokine and involved in pain regulation. Our previous study found that IL-17 markedly enhanced the excitatory activity of spinal dorsal neurons in mice spinal slices. The present study attempts to explore if IL-17 contributes to neuropathic pain and spinal synapse plasticity. A model of spared nerve injury (SNI) was established in C57BL/6 J mice and IL-17a mutant mice. The pain-like behaviors was tested by von Frey test and dynamic mechanical stimuli, and the expression of IL-17 and its receptor, IL-17RA, was detected by immunohistochemical staining. C-fiber evoked field potentials were recorded in vivo. In the spinal dorsal horn, IL-17 predominantly expressed in the superficial spinal astrocytes and IL-17RA expressed mostly in neurons and slightly in astrocytes. The SNI-induced static and dynamic allodynia was significantly prevented by pretreatment of neutralizing IL-17 antibody (intrathecal injection, 2 µg/10 µL) and attenuated in IL-17a mutant mice. Post-treatment of IL-17 neutralizing antibody also partially relieved the established mechanical allodynia. Moreover, spinal long-term potentiation (LTP) of C-fiber evoked field potentials, a substrate for central sensitization, was suppressed by IL-17 neutralizing antibody. Intrathecal injection of IL-17 recombinant protein (0.2 µg/10 µL) mimicked the mechanical allodynia and facilitated the spinal LTP. These data implied that IL-17 in the spinal cord played a crucial role in neuropathic pain and central sensitization.


Assuntos
Interleucina-17 , Neuralgia , Ratos , Camundongos , Animais , Hiperalgesia/metabolismo , Ratos Sprague-Dawley , Camundongos Endogâmicos C57BL , Neuralgia/metabolismo , Medula Espinal/metabolismo , Sinapses/metabolismo
8.
Nano Res ; 16(2): 2660-2671, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36405982

RESUMO

A bioresponsive polymeric nanocarrier for drug delivery is able to alter its physical and physicochemical properties in response to a variety of biological signals and pathological changes, and can exert its therapeutic efficacy within a confined space. These nanosystems can optimize the biodistribution and subcellular location of therapeutics by exploiting the differences in biochemical properties between tumors and normal tissues. Moreover, bioresponsive polymer-based nanosystems could be rationally designed as precision therapeutic platforms by optimizing the combination of responsive elements and therapeutic components according to the patient-specific disease type and stage. In this review, recent advances in smart bioresponsive polymeric nanosystems for cancer chemotherapy and immunotherapy will be summarized. We mainly discuss three categories, including acidity-sensitive, redox-responsive, and enzyme-triggered polymeric nanosystems. The important issues regarding clinical translation such as reproducibility, manufacture, and probable toxicity, are also commented.

9.
Nat Commun ; 14(1): 1884, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019890

RESUMO

Boron neutron capture therapy (BNCT) was clinically approved in 2020 and exhibits remarkable tumour rejection in preclinical and clinical studies. It is binary radiotherapy that may selectively deposit two deadly high-energy particles (4He and 7Li) within a cancer cell. As a radiotherapy induced by localized nuclear reaction, few studies have reported its abscopal anti-tumour effect, which has limited its further clinical applications. Here, we engineer a neutron-activated boron capsule that synergizes BNCT and controlled immune adjuvants release to provoke a potent anti-tumour immune response. This study demonstrates that boron neutron capture nuclear reaction forms considerable defects in boron capsule that augments the drug release. The following single-cell sequencing unveils the fact and mechanism that BNCT heats anti-tumour immunity. In female mice tumour models, BNCT and the controlled drug release triggered by localized nuclear reaction causes nearly complete regression of both primary and distant tumour grafts.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias , Masculino , Feminino , Animais , Camundongos , Boro/uso terapêutico , Neoplasias/tratamento farmacológico , Imunoterapia , Nêutrons , Compostos de Boro/uso terapêutico
10.
Biomater Sci ; 11(4): 1137-1152, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36601796

RESUMO

In situ tumor vaccination has aroused tremendous interest with its capability for eliciting strong and systemic antitumor immune responses. Unlike traditional cancer vaccines, in situ tumor vaccination avoids the laborious process of tumor antigen identification and can modulate tumor immunosuppressive microenvironment at the same time. In recent years, bacteria have been used as both efficient tumor-targeted delivery vehicles and potent adjuvants. Regarding the rapid development in this area, in this review, we summarize recent advances in the application of bacteria for in situ cancer vaccination. We illustrate the mechanisms of bacteria as both efficient tumor immunogenic cell death inducers and tumor-targeted delivery platforms. Then we comprehensively review the engineering strategies for designing bacteria-based in situ vaccination, including chemical modification, nanotechnology, and genetic engineering. The current dilemma and future directions are discussed at the end of this review.


Assuntos
Antineoplásicos , Vacinas Anticâncer , Neoplasias , Humanos , Neoplasias/terapia , Antígenos de Neoplasias , Vacinação , Microambiente Tumoral , Imunoterapia
11.
Adv Mater ; 35(28): e2212210, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37002917

RESUMO

Despite the superior tumor lytic efficacy of oncolytic viruses (OVs), their systemic delivery still faces the challenges of limited circulating periods, poor tumor tropism, and spontaneous antiviral immune responses. Herein, a virus-concealed tumor-targeting strategy enabling OVs' delivery toward lung metastasis via systemic administration is described. The OVs can actively infect, be internalized, and cloak into tumor cells. Then the tumor cells are subsequently treated with liquid-nitrogen-shocking to eliminate the pathogenicity. Such a Trojan Horse-like vehicle avoids virus neutralization and clearance in the bloodstream and facilitates tumor-targeted delivery for more than 110-fold virus enrichment in the tumor metastasis. In addition, this strategy can serve as a tumor vaccine and initiate endogenous adaptive antitumor effects through increasing the memory T cells and modulating the tumor immune microenvironment, including reducing the M2 macrophage, downregulating Treg cells, and priming T cells.


Assuntos
Vacinas Anticâncer , Neoplasias Pulmonares , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus Oncolíticos/fisiologia , Neoplasias/terapia , Neoplasias Pulmonares/terapia , Microambiente Tumoral , Imunoterapia
12.
Environ Sci Pollut Res Int ; 29(17): 25694-25708, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34845643

RESUMO

The traditional cementitious product is prone to suffer from a high degree of deterioration in the case of exposure to acid solutions because of the decomposition of the binder network. However, the degradation of concrete structures in service by mild concentrations of acid under conditions involving sewage, industrial waters, and acid rain is more common and results in a significant environmental problem. The utilization of alkali-activated materials has been seen to potentially offer an attractive option with regard to acceptable durability and a low carbon footprint. With the aid of visual observation, mass loss, compressive strength tests, X-ray diffraction, Fourier transform infrared spectroscopy, and field-emission scanning electron microscopy with energy-dispersive X-ray spectroscopy, the acid resistance of alkali-activated fly ash mortars in which the precursor was partially replaced (0-30% by mass proportion) with ordinary Portland cement (OPC) was evaluated after 180 days of exposure to mild-concentration sulfuric and acetic solutions (pH = 3). A conventional cement mortar (100% OPC) was used as a reference group. The results demonstrate that the addition of OPC into the alkali-activated system causes a significant increase in compressive strength (around 16.08-36.61%) while showing an opposite influence on durability after acid attack. Based on a linear mean value and nonlinear artificial neural network model simulation, the mass losses of the specimens were evaluated, and the alkali-activated pure-fly ash mortar demonstrated the lowest value (i.e., a maximum of 5.61%) together with the best behavior in the aspect of discreteness at 180 days. The results from microstructure analysis show that the coexistence of the N-A-S-H and C-S-H networks in the blend system occurred by both OPC hydration and FA. However, the formation of the gypsum deposition within the fly ash-OPC blend systems at sulfuric acid was found to impose internal disintegrating stresses, causing a significant area of delamination and cracks. In addition, alkali metal ion leaching, dealumination, as well as the disappearance of some crystalline phases occurred in specimens immersed in both types of acids.


Assuntos
Álcalis , Cinza de Carvão , Ácido Acético/análise , Álcalis/química , Cinza de Carvão/química , Força Compressiva , Materiais de Construção/análise , Enxofre
13.
Front Oncol ; 12: 1034842, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419877

RESUMO

Tumor-associated macrophage (TAM) as an important component of tumor microenvironment (TME) are closely related with the occurrence, development, and metastasis of malignant tumors. TAMs are generally identified as two distinct functional populations in TME, i.e., inflammatory/anti-tumorigenic (M1) and regenerative/pro-tumorigenic (M2) phenotype. Evidence suggests that occupation of the TME by M2-TAMs is closely related to the inactivation of anti-tumor immune cells such as T cells in TME. Recently, efforts have been made to reeducate TAMs from M2- to M1- phenotype to enhance cancer immunotherapy, and great progress has been made in realizing efficient modulation of TAMs using nanomedicines. To help readers better understand this emerging field, the potential TAM reeducation targets for potentiating cancer immunotherapy and the underlying mechanisms are summarized in this review. Moreover, the most recent advances in utilizing nanomedicine for the TAM immunomodulation for augmented cancer immunotherapy are introduced. Finally, we conclude with our perspectives on the future development in this field.

14.
Histol Histopathol ; 36(7): 725-731, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33604882

RESUMO

Fullerenes, as hydrophobic molecules, are limited in biomedical function due to their very low solubility. But taking C60(OH)ₓ as an example, the properties of fullerenols were analyzed. It was found that fullerenols had good stability, water solubility, good biocompatibility and low cytotoxicity by adding a hydroxyl group to carbon atoms. In the biomedical field, it has been found that fullerene C60 can be used as a powerful free radical scavenger, with antioxidant activity, with antibacterial and inhibitory effects on cancer cells. Fullerenols inherit the good properties of fullerenes, and are better used in cancer treatment, including loading drug therapy and directly as an anticancer drug. In addition, fullerenols are also used in the repair of myocardial injury, the treatment of myocardial infarction and neuroprotection. With the development of tissue engineering technology, the preparation of nerve scaffolds which can improve ischemia, hypoxia and oxidative stress after nerve injury has become a research hotspot. The electron absorption and reduction characteristics of fullerenols in biomedical research bring new ideas for the treatment of oxidative stress in the repair of peripheral nerve defects. It seems that the research on fullerenols loaded neural scaffold has great prospects.


Assuntos
Materiais Biocompatíveis/química , Fulerenos/química , Nanoestruturas/química , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/uso terapêutico , Fulerenos/uso terapêutico , Regeneração Tecidual Guiada/métodos , Humanos , Nanoestruturas/uso terapêutico , Regeneração Nervosa/fisiologia , Alicerces Teciduais
15.
Adv Sci (Weinh) ; 8(23): e2102077, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34687166

RESUMO

The authors reveal a thermal actuating bilayer that undergoes reversible deformation in response to low-energy thermal stimuli, for example, a few degrees of temperature increase. It is made of an aligned carbon nanotube (CNT) sheet covalently connected to a polymer layer in which dibenzocycloocta-1,5-diene (DBCOD) actuating units are oriented parallel to CNTs. Upon exposure to low-energy thermal stimulation, coordinated submolecular-level conformational changes of DBCODs result in macroscopic thermal contraction. This unique thermal contraction offers distinct advantages. It's inherently fast, repeatable, low-energy driven, and medium independent. The covalent interface and reversible nature of the conformational change bestow this bilayer with excellent repeatability, up to at least 70 000 cycles. Unlike conventional CNT bilayer systems, this system can achieve high precision actuation readily and can be scaled down to nanoscale. A new platform made of poly(vinylidene fluoride) (PVDF) in tandem with the bilayer can harvest low-grade thermal energy and convert it into electricity. The platform produces 86 times greater energy than PVDF alone upon exposure to 6 °C thermal fluctuations above room temperature. This platform provides a pathway to low-grade thermal energy harvesting. It also enables low-energy driven thermal artificial robotics, ultrasensitive thermal sensors, and remote controlled near infrared (NIR) driven actuators.

17.
Zhonghua Nan Ke Xue ; 9(8): 575-7, 2003 Nov.
Artigo em Zh | MEDLINE | ID: mdl-14689886

RESUMO

OBJECTIVE: To study the five-year postoperative effect of the ligation and resection of the deep penile vein for the patient of erectile dysfunction (ED) caused by penile venous leakage. METHODS: Sixteen ED patients received deep penile vein ligation and resection. Observations of the penile erection had been recorded for 5 years after surgery. RESULTS: Eight cases demonstrated erectile hypofunction after 18 months postoperatively and total ED after 21-30 months of which 6 were improved by chemotherapy, and 2 showed no improvement. Seven cases remained normal and 1 case get out of touch at the 24th month postoperatively. CONCLUSIONS: The ligation and resection of the deep penile vein can be considered as an easy and effective method to treat patients of ED caused by penile venous leakage.


Assuntos
Impotência Vasculogênica/cirurgia , Pênis/irrigação sanguínea , Complicações Pós-Operatórias , Adulto , Seguimentos , Humanos , Ligadura , Masculino , Pessoa de Meia-Idade , Veias/cirurgia
18.
Zhonghua Wai Ke Za Zhi ; 41(3): 211-3, 2003 Mar.
Artigo em Zh | MEDLINE | ID: mdl-12887783

RESUMO

OBJECTIVE: To study the clinical causes of the erectile dysfunction (ED). METHODS: One hundred and thirty cases of ED were examined by hemonamometry and cavernosography with vasodilating agent. The data about penile brachial index, intracavernous pressure, maintenance flow rate, and pressure loss change were obtained and the status of the penile veins was detected. RESULTS: Among 130 patients with ED, 39 had venous leakage including penile arterial insufficiency simultaneous venous leakage in 15 patients. Various leakage sites were observed by using cavernosography. Twenty-eight patients showed deep dorsal veins only and the remaining crural veins. CONCLUSION: Hemodynamometry is effective to diagnose the cause of ED.


Assuntos
Disfunção Erétil/fisiopatologia , Hemodinâmica , Adulto , Idoso , Disfunção Erétil/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Vasodilatadores/farmacologia
19.
Carbohydr Polym ; 101: 68-74, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24299750

RESUMO

Nanocomposite fiber mats based on biodegradable polycaprolactone (PCL) and chitin nanofibril (n-chitin) were produced via electrospinning. The morphologies, thermal and mechanical properties as well as surface wettability of the fiber mats were studied by scanning electron microscopy, differential scanning calorimetry analysis, thermogravimetric analysis, dynamic mechanical analysis and static water-contact-angle analysis, respectively. The addition of chitin nanofibrils into PCL resulted in a small change in thermal behavior, but a significant improvement in mechanical properties. Moreover, the surface wettability of electrospun fiber mats transformed from hydrophobicity to hydrophilicity when the chitin nanofibril content was more than 25 wt%. In addition, in vitro cell culture results indicated that the addition of chitin nanofibrils can strongly improve the cellular infiltration and migration confirming that the chitin nanofibril was a good reinforcing as well as bioactive filler for PCL.


Assuntos
Quitina/química , Eletricidade , Nanocompostos/química , Nanofibras/química , Nanotecnologia/métodos , Poliésteres/química , Temperatura , Alicerces Teciduais/química
20.
Nan Fang Yi Ke Da Xue Xue Bao ; 33(12): 1718-22, 2013 Dec.
Artigo em Zh | MEDLINE | ID: mdl-24369231

RESUMO

OBJECTIVE: To study the effect of protein tyrosine phosphatase non-receptor type 12 (PTPN12) in regulating cardiac HERG channel currents. METHODS: The plasmids pcDNA3.1-PTPN12-RFP and herg mutant constructed by PCR technique were transfected into HEK293 cells via Lipofectamine 2000, and the cells stably expressing PTPN12 selected with G418 were identified by Western blotting with anti-PTPN12 antibody. HERG channel current in cells expressing HERG alone (HEK293/HERG cells), cells overexpressing PTPN12 (HEK293/HERG cells transfected with pCDNA3.1-PTPN12-RFP), PAO-treated cells (PTPN12/HERG cells treated with PAO), and herg mutant cells (HEK293/HERGY327A-Y700A-Y845A cells transfected with pcDNA3.1-PTPN12-RFP) were recorded by patch-clamp technique. RESULTS: The plasmids pcDNA3.1-PTPN12-RFP and herg mutant were successfully constructed, and the stable expressing cell lines were established. Red fluorescence was obversed in HEK293/HERG cells transfected with pcDNA3.1-PTPN12-RFP, and the protein expression of PTPN12 was detected. Overexpression of PTPN12 significantly decreased HERG current density in HEK293/HERG cells, and this change was significantly weakened in the inhibitor group and herg mutant group. CONCLUSION: PTPN12 negatively regulates cardiac HERG channel cerrent possibly by decreasing the phosphorylation level of HERG tyrosine residues. This finding provides further insight into the regulatory mechanism of HERG channel and the pathogenesis of long QT syndrome.


Assuntos
Canais de Potássio Éter-A-Go-Go/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 12/fisiologia , Células HEK293 , Coração , Humanos , Síndrome do QT Longo , Técnicas de Patch-Clamp , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA