RESUMO
After treatment with chimeric antigen receptor (CAR) T cells, interleukin-15 (IL-15) elevation and CAR T-cell expansion are associated with non-Hodgkin lymphoma (NHL) outcomes. However, the association of preinfusion CAR product T-cell functionality with clinical outcomes has not been reported. A single-cell analysis of the preinfusion CD19 CAR product from patients with NHL demonstrated that CAR products contain polyfunctional T-cell subsets capable of deploying multiple immune programs represented by cytokines and chemokines, including interferon-γ, IL-17A, IL-8, and macrophage inflammatory protein 1α. A prespecified T-cell polyfunctionality strength index (PSI) applied to preinfusion CAR product was significantly associated with clinical response, and PSI combined with CAR T-cell expansion or pretreatment serum IL-15 levels conferred additional significance. Within the total product cell population, associations with clinical outcomes were greater with polyfunctional CD4+ T cells compared with CD8+ cells. Grade ≥3 cytokine release syndrome was associated with polyfunctional T cells, and both grade ≥3 neurologic toxicity and antitumor efficacy were associated with polyfunctional IL-17A-producing T cells. The findings in this exploratory study show that a preinfusion CAR product T-cell subset with a definable polyfunctional profile has a major association with clinical outcomes of CAR T-cell therapy. This trial was registered at www.clinicaltrials.gov as #NCT00924326.
Assuntos
Transferência Adotiva , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Linfoma não Hodgkin , Receptores de Antígenos de Linfócitos T/uso terapêutico , Receptores de Antígenos Quiméricos/uso terapêutico , Adulto , Idoso , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/transplante , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/transplante , Citocinas/imunologia , Feminino , Humanos , Células K562 , Linfoma não Hodgkin/imunologia , Linfoma não Hodgkin/patologia , Linfoma não Hodgkin/terapia , Masculino , Pessoa de Meia-IdadeRESUMO
Autoreactive pathogenic T cells (Tpaths) and regulatory T cells (Tregs) express a distinct gene profiles; however, the genes and associated genetic/signaling pathways responsible for the functional determination of Tpaths vs. Tregs remain unknown. Here we show that Skp2, an E3 ubiquitin ligase that affects cell cycle control and death, plays a critical role in the function of diabetogenic Tpaths and Tregs. Down-regulation of Skp2 in diabetogenic Tpaths converts them into Foxp3-expressing Tregs. The suppressive function of the Tpath-converted Tregs is dependent on increased production of TGF-ß/IL-10, and these Tregs are able to inhibit spontaneous diabetes in NOD mice. Like naturally arising Foxp3(+) nTregs, the converted Tregs are anergic cells with decreased proliferation and activation-induced cell death. Skp2 down-regulation leads to Tpath-Treg conversion due at least in part to up-regulation of several genes involved in cell cycle control and genes in the Foxo family. Down-regulation of the cyclin-dependent kinase inhibitor p27 alone significantly attenuates the effect of Skp2 on Tpaths and reduces the suppressive function of converted Tregs; its effect is further improved with concomitant down-regulation of p21, Foxo1, and Foxo3. In comparison, Skp2 overexpression does not change Tpath function, but significantly decreases Foxp3 expression and abrogates the suppressive function of nTregs. These findings support the critical role of Skp2 in functional specification of Tpaths and Tregs, and demonstrate an important molecular mechanism mediating Skp2 function in balancing immune tolerance during autoimmune disease development.
Assuntos
Diabetes Mellitus Experimental/imunologia , Fatores de Transcrição Forkhead/metabolismo , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores , Linfócitos T Reguladores/imunologia , Linfócitos T/imunologia , Animais , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Linfócitos T Reguladores/metabolismoRESUMO
HSV-1 is the leading cause of sporadic encephalitis in humans. HSV infection of susceptible 129S6 mice results in fatal encephalitis (HSE) caused by massive inflammatory brainstem lesions comprising monocytes and neutrophils. During infection with pathogenic microorganisms or autoimmune disease, IgGs induce proinflammatory responses and recruit innate effector cells. In contrast, high dose intravenous immunoglobulins (IVIG) are an effective treatment for various autoimmune and inflammatory diseases because of potent anti-inflammatory effects stemming in part from sialylated IgGs (sIgG) present at 1-3% in IVIG. We investigated the ability of IVIG to prevent fatal HSE when given 24 h post infection. We discovered a novel anti-inflammatory pathway mediated by low-dose IVIG that protected 129S6 mice from fatal HSE by modulating CNS inflammation independently of HSV specific antibodies or sIgG. IVIG suppressed CNS infiltration by pathogenic CD11b(+) Ly6C(high) monocytes and inhibited their spontaneous degranulation in vitro. FcγRIIb expression was required for IVIG mediated suppression of CNS infiltration by CD45(+) Ly6C(low) monocytes but not for inhibiting development of Ly6C(high) monocytes. IVIG increased accumulation of T cells in the CNS, and the non-sIgG fraction induced a dramatic expansion of FoxP3(+) CD4(+) T regulatory cells (Tregs) and FoxP3(-) ICOS(+) CD4(+) T cells in peripheral lymphoid organs. Tregs purified from HSV infected IVIG treated, but not control, mice protected adoptively transferred mice from fatal HSE. IL-10, produced by the ICOS(+) CD4(+) T cells that accumulated in the CNS of IVIG treated, but not control mice, was essential for induction of protective anti-inflammatory responses. Our results significantly enhance understanding of IVIG's anti-inflammatory and immunomodulatory capabilities by revealing a novel sIgG independent anti-inflammatory pathway responsible for induction of regulatory T cells that secrete the immunosuppressive cytokine IL-10 and further reveal the therapeutic potential of IVIG for treating viral induced inflammatory diseases.
Assuntos
Encefalite por Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Imunoglobulinas Intravenosas/uso terapêutico , Fatores Imunológicos/uso terapêutico , Interleucina-10/metabolismo , Animais , Antígenos Ly/metabolismo , Barreira Hematoencefálica/imunologia , Tronco Encefálico/patologia , Linfócitos T CD4-Positivos/imunologia , Encefalite por Herpes Simples/mortalidade , Encefalite por Herpes Simples/prevenção & controle , Encefalite por Herpes Simples/virologia , Citometria de Fluxo , Herpesvirus Humano 1/patogenicidade , Humanos , Imunoglobulinas Intravenosas/administração & dosagem , Imunoglobulinas Intravenosas/imunologia , Interleucina-10/administração & dosagem , Interleucina-10/imunologia , Leucócitos/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , Monócitos/imunologia , Neutrófilos/imunologia , Linfócitos T Reguladores/imunologia , Fatores de TempoRESUMO
The mechanism(s) behind folate rescue of neural tube closure are not well understood. In this study we show that maternal intake of folate prior to conception reverses the proliferation potential of neural crest stem cells in homozygous Splotch embryos (Sp(-/-)) via epigenetic mechanisms. It is also shown that the pattern of differentiation seen in these cells is similar to wild-type (WT). Cells from open caudal neural tubes of Sp(-/-) embryos exhibit increased H3K27 methylation and decreased expression of KDM6B possibly due to up-regulation of KDM6B targeting micro-RNAs such as miR-138, miR-148a, miR-185, and miR-339-5p. In our model, folate reversed these epigenetic marks in folate-rescued Sp(-/-) embryos. Using tissue from caudal neural tubes of murine embryos we also examined H3K27me2 and KDM6B association with Hes1 and Neurog2 promoters at embryonic day E10.5, the proliferative stage, and E12.5, when neural differentiation begins. In Sp(-/-) embryos compared with WT, levels of H3K27me2 associated with the Hes1 promoter were increased at E10.5, and levels associated with the Neurog2 promoter were increased at E12.5. KDM6B association with Hes1 and Neurog2 promoters was inversely related to H3K27me2 levels. These epigenetic changes were reversed in folate-rescued Sp(-/-) embryos. Thus, one of the mechanisms by which folate may rescue the Sp(-/-) phenotype is by increasing the expression of KDM6B, which in turn decreases H3K27 methylation marks on Hes1 and Neurog2 promoters thereby affecting gene transcription.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Ácido Fólico/administração & dosagem , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , Tubo Neural/efeitos dos fármacos , Tubo Neural/embriologia , Regiões Promotoras Genéticas/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sistema Nervoso Central/embriologia , Montagem e Desmontagem da Cromatina/genética , Imunoprecipitação da Cromatina , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Epigenômica , Feminino , Imunofluorescência , Ácido Fólico/farmacologia , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Técnicas Imunoenzimáticas , Imunoprecipitação , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Luciferases/metabolismo , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Defeitos do Tubo Neural/prevenção & controle , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/fisiologia , Regiões Promotoras Genéticas/efeitos dos fármacos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição HES-1 , Complexo Vitamínico B/administração & dosagem , Complexo Vitamínico B/farmacologiaRESUMO
Anti-CD19 chimeric antigen receptor (CAR)-expressing T cells are an effective treatment for B-cell lymphoma, but often cause neurologic toxicity. We treated 20 patients with B-cell lymphoma on a phase I, first-in-human clinical trial of T cells expressing the new anti-CD19 CAR Hu19-CD828Z (NCT02659943). The primary objective was to assess safety and feasibility of Hu19-CD828Z T-cell therapy. Secondary objectives included assessments of blood levels of CAR T cells, anti-lymphoma activity, second infusions and immunogenicity. All objectives were met. Fifty-five percent of patients who received Hu19-CD828Z T cells obtained complete remission. Hu19-CD828Z T cells had clinical anti-lymphoma activity similar to that of T cells expressing FMC63-28Z, an anti-CD19 CAR tested previously by our group, which contains murine binding domains and is used in axicabtagene ciloleucel. However, severe neurologic toxicity occurred in only 5% of patients who received Hu19-CD828Z T cells, whereas 50% of patients who received FMC63-28Z T cells experienced this degree of toxicity (P = 0.0017). T cells expressing Hu19-CD828Z released lower levels of cytokines than T cells expressing FMC63-28Z. Lower levels of cytokines were detected in blood from patients who received Hu19-CD828Z T cells than in blood from those who received FMC63-28Z T cells, which could explain the lower level of neurologic toxicity associated with Hu19-CD828Z. Levels of cytokines released by CAR-expressing T cells particularly depended on the hinge and transmembrane domains included in the CAR design.
Assuntos
Antígenos CD19/imunologia , Imunoterapia Adotiva , Linfoma de Células B/imunologia , Linfoma de Células B/terapia , Receptores de Antígenos Quiméricos/imunologia , Adolescente , Adulto , Idoso , Citocinas/metabolismo , Estudos de Viabilidade , Feminino , Humanos , Células K562 , Masculino , Pessoa de Meia-Idade , Fenótipo , Domínios Proteicos , Indução de Remissão , Adulto JovemRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Pax3 is expressed early during embryonic development in spatially restricted domains including limb muscle, neural crest, and neural tube. Pax3 functions at the nodal point in melanocyte stem cell differentiation, cardiogenesis and neurogenesis. Additionally Pax3 has been implicated in migration and differentiation of precursor cell populations. Currently there are questions about how Pax3 regulates these diverse functions. In this study we found that in the absence of functional Pax3, as in Splotch embryos, the neural crest cells undergo premature neurogenesis, as evidenced by increased Brn3a positive staining in neural tube explants, in comparison with wild-type. Premature neurogenesis in the absence of functional Pax3 may be due to a change in the regulation of basic helix-loop-helix transcription factors implicated in proliferation and differentiation. Using promoter-luciferase activity measurements in transient co-transfection experiments and electro-mobility shift assays, we show that Pax3 regulates Hairy and enhancer of split homolog-1 (Hes1) and Neurogenin2 (Ngn2) by directly binding to their promoters. Chromatin immunoprecipitation assays confirmed that Pax3 bound to cis-regulatory elements within Hes1 and Ngn2 promoters. These observations suggest that Pax3 regulates Hes1 and Ngn2 and imply that it may couple migration with neural stem cell maintenance and neurogenesis.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , Animais , Movimento Celular , Genótipo , Sequências Hélice-Alça-Hélice/genética , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Crista Neural/fisiologia , Tubo Neural/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição HES-1RESUMO
Foxp3(+) regulatory T cells (Treg) play a crucial role in regulating immune tolerance. The use of Treg to restore immune tolerance is considered an attractive novel approach to inhibit autoimmune disease, including type 1 diabetes (T1D), and to prevent rejection of organ transplants. In view of the goal of developing autologous Treg-based cell therapy for patients with long-term (>15 years) T1D, it will be necessary to expand a sufficient amount of functional Treg in vitro in order to study and compare Treg from T1D patients and healthy subjects. Our results have demonstrated that there is a comparable frequency of Treg in the peripheral blood lymphocytes (PBLs) of patients with long-term T1D relative to those in healthy subjects; however, Th1 cells, but not Th17 cells, were increased in the T1D patients. Further, more Treg in PBLs from T1D patients than from healthy subjects expressed the CD45RO(+) memory cell phenotype, suggesting they were antigen-experienced cells. After isolation, Treg from both T1D patients and healthy subjects were successfully expanded with high purity. Although there was no difference in Helios expression on Treg in PBLs, in vitro expansion led to fewer Helios-expressing Treg from T1D patients than healthy subjects. While more Th1-like Treg expressing IFN-γ or TNF-α were found in the PBLs of T1D patients than healthy controls, there was no such difference in the expanded Treg. Importantly, expanded Treg from both subject groups were able to suppress autologous or allogeneic CD8(+) effector T cells equally well. Our findings demonstrate that a large number of ex vivo expanded functional Treg can be obtained from long-term T1D patients, although fewer expanded Treg expressed a high level of Helios. Thus, based on the positive outcomes, these potent expanded Treg from diabetic human patients may be useful in treating T1D or preventing islet graft rejection.
Assuntos
Diabetes Mellitus Tipo 1/imunologia , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Fator de Transcrição Ikaros/metabolismo , Recuperação de Função Fisiológica , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo , Adulto , Estudos de Casos e Controles , Contagem de Células , Proliferação de Células , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatologia , Feminino , Humanos , Tolerância Imunológica , Interferon gama/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Masculino , Pessoa de Meia-Idade , Linfócitos T Reguladores/imunologia , Células Th1/citologia , Células Th17/citologia , Fator de Necrose Tumoral alfa/metabolismo , Adulto JovemRESUMO
The epigenetic mechanism of folic acid (FA) action on dorsal root ganglion (DRG) cell proliferation and sensory neuron differentiation is not well understood. In this study, the ND7 cell line, derived from DRG cells, was used to elucidate this mechanism. In ND7 cells differentiated with dbcAMP and NGF, Hes1 and Pax3 levels decreased, whereas Neurog2 levels showed a modest increase. Chromatin immunoprecipitation (ChIP) assays examining epigenetic marks at the Hes1 promoter showed that FA favored increased H3K9 and H3K19 acetylation and decreased H3K27 methylation. Hence, FA plays a positive role in cell proliferation. In differentiated ND7 cells, H3K27 methylation decreased, whereas H3K9 and H3K18 acetylation increased at the Neurog2 promoter. FA did not favor this phenotypic outcome. Additionally, in differentiated ND7 Neurog2 associated with the NeuroD1 promoter, FA decreased this association. The results suggest that the switch from proliferation to sensory neuron differentiation in DRG cells is regulated by alterations in epigenetic marks, H3K9/18 acetylation and H3K27 methylation, at Hes1 and Neurog2 promoters, as well as by Neurog2 association with NeuroD1 promoter. FA although positive for proliferation, does not appear to play a role in differentiation.
Assuntos
Epigênese Genética/efeitos dos fármacos , Ácido Fólico/farmacologia , Gânglios Espinais/citologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Neurogênese/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Cromatina/química , Cromatina/metabolismo , Cromatina/fisiologia , Histonas/química , Histonas/metabolismo , Histonas/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Regiões Promotoras Genéticas , RatosRESUMO
Pax3 plays a role in regulating Hes1 and Neurog2 activity and thereby stem cell maintenance and neurogenesis. A mechanism for Pax3 regulation of these two opposing events, during caudal neural tube development, is examined in this study. Pax3 acetylation on C-terminal lysine residues K437 and K475 may be critical for proper regulation of Hes1 and Neurog2. Removal of these lysine residues increased Hes1 but decreased Neurog2 promoter activity. SIRT1 deacetylase may be a key component in regulating Pax3 acetylation. Chromatin immunoprecipitation assays showed that SIRT1 is associated with Hes1 and Neurog2 promoters during murine embryonic caudal neural tube development at E9.5, but not at E12.5. Overexpression of SIRT1 decreased Pax3 acetylation, Neurog2 and Brn3a positive staining. Conversely, siRNA-mediated silencing of SIRT1 increased these factors. These studies suggest that Pax3 acetylation results in decreased Hes1 and increased Neurog2 activity, thereby promoting sensory neuron differentiation.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/genética , Fatores de Transcrição Box Pareados/metabolismo , Células Receptoras Sensoriais/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Acetilação , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina/métodos , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Tubo Neural/metabolismo , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/genética , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Fatores de Transcrição HES-1RESUMO
Pax3 regulates neural crest cell migration and is critical during neural crest development. TGFbs modify neural crest cell migration and differentiation. TGFbeta2 nullizygous embryos (TGFbeta2(-/-)Pax3(+/+)) display open neural tube and bifid spine, whereas in wild type embryos, the neural tube is closed. In previous work, we have demonstrated that Pax3 regulates TGFbeta2 by directly binding to cis-regulatory elements on its promoter. In this study, we found that the TGFbeta2 nullizygous phenotype can be reversed to the wild type phenotype by down-regulating one allele of Pax3, as in TGFbeta2(-/-)Pax3(+/-) embryos obtained through breeding TGFb2(+/-)Pax3(+/-) mice. The data in this paper suggest that Pax3 and TGFbeta2 interact in a coordinated gene regulatory network, linked by common downstream effector genes, to bring about this phenotypic reversal. Downstream effectors may include Hes1, Ngn2 and Sox9, as well as other genes involved in neuronal differentiation.