Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nat Immunol ; 25(2): 240-255, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182668

RESUMO

Ikaros transcription factors are essential for adaptive lymphocyte function, yet their role in innate lymphopoiesis is unknown. Using conditional genetic inactivation, we show that Ikzf1/Ikaros is essential for normal natural killer (NK) cell lymphopoiesis and IKZF1 directly represses Cish, a negative regulator of interleukin-15 receptor resulting in impaired interleukin-15 receptor signaling. Both Bcl2l11 and BIM levels, and intrinsic apoptosis were increased in Ikzf1-null NK cells, which in part accounts for NK lymphopenia as both were restored to normal levels when Ikzf1 and Bcl2l11 were co-deleted. Ikzf1-null NK cells presented extensive transcriptional alterations with reduced AP-1 transcriptional complex expression and increased expression of Ikzf2/Helios and Ikzf3/Aiolos. IKZF1 and IKZF3 directly bound AP-1 family members and deletion of both Ikzf1 and Ikzf3 in NK cells resulted in further reductions in Jun/Fos expression and complete loss of peripheral NK cells. Collectively, we show that Ikaros family members are important regulators of apoptosis, cytokine responsiveness and AP-1 transcriptional activity.


Assuntos
Células Matadoras Naturais , Fator de Transcrição AP-1 , Fator de Transcrição AP-1/genética , Células Matadoras Naturais/metabolismo , Receptores de Interleucina-15 , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo
2.
Immunol Cell Biol ; 102(1): 58-70, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37855066

RESUMO

The clinical development of Natural Killer (NK) cell-mediated immunotherapy marks a milestone in the development of new cancer therapies and has gained traction due to the intrinsic ability of the NK cell to target and kill tumor cells. To fully harness the tumor killing ability of NK cells, we need to improve NK cell persistence and to overcome suppression of NK cell activation in the tumor microenvironment. The trans-membrane, protein tyrosine phosphatase CD45, regulates NK cell homeostasis, with the genetic loss of CD45 in mice resulting in increased numbers of mature NK cells. This suggests that CD45-deficient NK cells might display enhanced persistence following adoptive transfer. However, we demonstrate here that adoptive transfer of CD45-deficiency did not enhance NK cell persistence in mice, and instead, the homeostatic disturbance of NK cells in CD45-deficient mice stemmed from a developmental defect in the progenitor population. The enhanced maturation within the CD45-deficient NK cell compartment was intrinsic to the NK cell lineage, and independent of the developmental defect. CD45 is not a conventional immune checkpoint candidate, as systemic loss is detrimental to T and B cell development, compromising the adaptive immune system. Nonetheless, this study suggests that inhibition of CD45 in progenitor or stem cell populations may improve the yield of in vitro generated NK cells for adoptive therapy.


Assuntos
Células Matadoras Naturais , Neoplasias , Animais , Camundongos , Imunoterapia , Imunoterapia Adotiva , Microambiente Tumoral
3.
Environ Sci Technol ; 58(1): 925-934, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38117535

RESUMO

Hydrogen peroxide (H2O2), as a critical green chemical, has received immense attention in energy and environmental fields. The ability to produce H2O2 in earth-abundant water without relying on low solubility oxygen would be a sustainable and potentially economic process, applicable even to anaerobic microenvironments, such as groundwater treatment. However, the direct water to H2O2 process is currently hindered by low selectivity and low production rates. Herein, we report that poly(tetrafluoroethylene) (PTFE), a commonly used inert polymer, can act as an efficient triboelectric catalyst for H2O2 generation. For example, a high H2O2 production rate of 24.8 mmol gcat-1 h-1 at a dosage of 0.01 g/L PTFE was achieved under the condition of pure water, ambient atmosphere, and no sacrificial agents, which exceeds the performance of state-of-the-art aqueous H2O2 powder catalysts. Electron spin resonance and isotope experiments provide strong evidence that water-PTFE tribocatalysis can directly oxidize water to produce H2O2 under both anaerobic and aerobic conditions, albeit with different synthetic pathways. This study demonstrates a potential strategy for green and effective tribocatalytic H2O2 production that may be particularly useful toward environmental applications.


Assuntos
Peróxido de Hidrogênio , Oxigênio , Polímeros , Água , Politetrafluoretileno
4.
Nano Lett ; 22(1): 263-270, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34905368

RESUMO

Nonuniform Li deposition causes dendrites and low Coulombic efficiency (CE), seriously hindering the practical applications of Li metal. Herein, we developed an artificial solid-state interphase (SEI) with planar polycyclic aromatic hydrocarbons (PAHs) on the surface of Li metal anodes by a facile in situ formation technology. The resultant dihydroxyviolanthron (DHV) layers serve as the protective layer to stabilize the SEI. In addition, the oxygen-containing functional groups in the soft and conformal SEI film can regulate the diffusion and transport of Li ions to homogenize the deposition of Li metal. The artificial SEI significantly improves the CEs and shows superior cyclability of over 1000 h at 4 mAh cm-2. The LiFePO4/Li cell (2.8 mAh cm-2) enables a long cyclability for 300 cycles and high CEs of 99.8%. This work offers a new strategy to inhibit Li dendrite growth and enlightens the design on stable SEI for metal anodes.

5.
Langmuir ; 38(45): 13841-13848, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36325981

RESUMO

A heterojunction of Cu2O and Cr-doped SrTiO3 (SrTi1-xCrxO3) was designed for selective photocatalytic isopropanol (IPA) oxidation under visible light irradiation. The photocatalytic oxidation of IPA was measured in a fixed-bed reactor. Cr dopants can increase the light absorption and improve the activity of the catalyst. The formation of the Cu2O/SrTi1-xCrxO3 heterojunction can further broaden the absorption range of lights and dramatically increase the photocatalytic activity for selective oxidation of IPA. The 3% Cu2O/SrTi0.99Cr0.01O3 catalyst can fully convert ∼1000 ppm IPA under illumination in 2 h. The selectivity of acetone is ∼100%. The yield is 83 and 4 times higher than that using SrTiO3 and SrTi0.99Cr0.01O3 as catalysts, respectively. By measuring the ultraviolet-visible absorption spectra and Mott-Schottky plots, we obtained the band structure of the heterojunction, which shows that the conduction and valence bands of Cu2O are higher than those of SrTi1-xCrxO3, therefore facilitating the separation and transfer of photogenerated electrons and holes. In addition, electron paramagnetic resonance spectroscopy and radical trapping tests reveal that the generation of hydroxyl and superoxide leads to photocatalytic oxidation of IPA by the heterojunction photocatalyst.

6.
Sensors (Basel) ; 22(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35890991

RESUMO

Fault detection and exclusion are essential to ensure the integrity and reliability of the tightly coupled global navigation satellite system (GNSS)/inertial navigation system (INS) integrated navigation system. A fault detection and system reconfiguration scheme based on generative adversarial networks (GAN-FDSR) for tightly coupled systems is proposed in this paper. The chaotic characteristics of pseudo-range data are analyzed, and the raw data are reconstructed in phase space to improve the learning ability of the models for non-linearity. The trained model is used to calculate generation and discrimination scores to construct fault detection functions and detection thresholds while retaining the generated data for subsequent system reconfiguration. The influence of satellites on positioning accuracy of the system under different environments is discussed, and the system reconfiguration scheme is dynamically selected by calculating the relative differential precision of positioning (RDPOP) of the faulty satellites. Simulation experiments are conducted using the field test data to assess fault detection performance and positioning accuracy. The results show that the proposed method greatly improves the detection sensitivity of the system for small-amplitude faults and gradual faults, and effectively reduces the positioning error during faults.

7.
Nano Lett ; 21(13): 5805-5812, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34128686

RESUMO

Metal-organic frameworks (MOFs) have been proposed as emerging fillers for composite polymer electrolytes (CPEs). However, MOF particles are usually served as passive fillers that yield limited ionic conductivity improvement. Building continuous MOF reinforcements and exploiting their active roles remain challenging. Here we demonstrate the feasibility of engineering fast Li+ conduction within MOF on molecule conception. Two-dimensional Cu(BDC) MOF is selected as an active filler due to its sufficient accessible open metal sites for perchlorate anion anchoring to release free Li+, verified by theoretical calculations and measurements. A novel Cu(BDC)-scaffold-reinforced CPE is developed via in situ growth of MOF, which provides fast Li+ channels inside MOF and continuous Li+ paths along the MOF/polymer interface for high Li+ conductivity (ambient 0.24 mS cm-1) and enables high mechanical strength. Stable cycling is achieved in solid-state Li-NCM811 full cell using the MOF-reinforced CPE. This molecule-basis Li+ conduction strategy brings new ideas for designing advanced CPEs.


Assuntos
Estruturas Metalorgânicas , Eletrólitos , Íons , Lítio , Polímeros
8.
Small ; 17(41): e2103051, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34510738

RESUMO

Developing emerging materials for high energy-density lithium-sulfur (Li-S) batteries is of great significance to suppress the shuttle effect of polysulfides and to accommodate the volumetric change of sulfur. Here, a novel porous microcapsule system containing a carbon nanotubes/tin dioxide quantum dots/S (CNTs/QDs/S) composite core and a porous shell prepared through a liquid-driven coaxial microfluidic method as Li-S battery cathode is developed. The encapsulated CNTs in the microcapsules provide pathways for electron transport; SnO2 QDs on CNTs immobilize the polysulfides by strong adsorption, which is verified by using density functional theory calculations on binding energies. The porous shell of the microcapsule is beneficial for ion diffusion and electrolyte penetration. The void inside the microcapsule accommodates the volumetric change of sulfur. The Li-S battery based on the porous CNTs/QDs/S microcapsules displays a high capacity of 1025 mAh g-1 after 100 cycles at 0.1 C. When the sulfur loading is 2.03 mg cm-2 , the battery shows a stable cycling life of 700 cycles, a Coulombic efficiency exceeding 99.9%, a recoverable rate-performance during repeated tests, and a good temperature tolerance at both -5 and 45 °C, which indicates a potential for applications at different conditions.

9.
Small ; 16(22): e2000870, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32372530

RESUMO

Lithium-sulfur batteries, as one of promising next-generation energy storage devices, hold great potential to meet the demands of electric vehicles and grids due to their high specific energy. However, the sluggish kinetics and the inevitable "shuttle effect" severely limit the practical application of this technology. Recently, design of composite cathode with effective catalysts has been reported as an essential way to overcome these issues. In this work, oxygen-deficient ferric oxide (Fe2 O3- x ), prepared by lithiothermic reduction, is used as a low-cost and effective cathodic catalyst. By introducing a small amount of Fe2 O3- x into the cathode, the battery can deliver a high capacity of 512 mAh g-1 over 500 cycles at 4 C, with a capacity fade rate of 0.049% per cycle. In addition, a self-supporting porous S@KB/Fe2 O3- x cathode with a high sulfur loading of 12.73 mg cm-2 is prepared by freeze-drying, which can achieve a high areal capacity of 12.24 mAh cm-2 at 0.05 C. Both the calculative and experimental results demonstrate that the Fe2 O3- x has a strong adsorption toward soluble polysulfides and can accelerate their subsequent conversion to insoluble products. As a result, this work provides a low-cost and effective catalyst candidate for the practical application of lithium-sulfur batteries.

10.
Nanotechnology ; 31(29): 295404, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32241005

RESUMO

The poor conductivity of sulfur and the 'shuttle effect' of polysulfide intermediates have hindered the development of next generation lithium-sulfur (Li-S) batteries with high energy and low consumption. Herein, novel Co9S8-S composite nanotubes are developed to efficiently alleviate the above-mentioned problems. Experiments and theoretical calculations show that Co9S8 has strong adsorption on soluble polysulfides. This not only restrains polysulfides diffusion and ensures their utilization, but also enhances the intimate contact between the active materials and the conductive substrates to promote the kinetics of conversion reactions. The three-dimensional (3D) conductive network with a high surface area formed by interlinking Co9S8 nanotubes further improves the electronic conductivity of the composite cathode. As a result, the Co9S8-S cathode shows a high capacity of 1153 mAh g-1. After 500 cycles, a high capacity of 462 mAh g-1 (2 C) is demonstrated with a negligible capacity decay of ~0.04% per cycle.

11.
Pestic Biochem Physiol ; 165: 104467, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32359547

RESUMO

RNA interference (RNAi) has proven to be a very promising prospect for insect pest control. However, low RNAi efficacy limits further development of this biotechnology for use on lepidopteran insects, including the rice striped stem borer (SSB) (Chilo suppressalis), one of the major destructive rice pests. In this work, the application of various nanoparticles (NPs) by which double-stranded RNA (dsRNA) could be encapsulated was evaluated as an alternative delivery strategy to potentially increase the bioactivity of dsRNA. Three NPs, chitosan, carbon quantum dot (CQD), and lipofectamine2000, complexed with dsRNA (to target the glyceraldehyde-3-phosphate dehydrogenase gene (G3PDH)) were tested to examine their use in controlling SSB. Relative mRNA expressions were quantified using qPCR to evaluate knockdown efficiency of NP-dsRNA treated larvae, and the correlated dsRNA-mediated SSB larval mortality was tested. Thereafter, the content dynamics of hemolymph dsRNA after ingesting different NP-dsRNA were monitored in vivo; the hemolymph dsRNA content was in ratios of 5.67, 9.43, and 1 with chitosan, CQD, and lipofectamine2000 induced samples, respectively. The results demonstrated that all three tested NPs led to efficient feeding delivery by improving both dsRNA stability and cellular uptake equally. Furthermore, there was a strong correlation (r= 0.9854) between the hemolymph dsRNA contents and the average RNAi depletions in the non-gut tissues of SSB. Overall, our results strongly suggest that due to its strong endosomal escaping ability, CQD was the most efficient carrier for inducing systemic RNAi, and thereby causing effective gene silencing and mortality in SSB.


Assuntos
Mariposas , Nanopartículas , Animais , Larva , Interferência de RNA , RNA de Cadeia Dupla
12.
Sensors (Basel) ; 19(22)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717380

RESUMO

Reliable and efficient sensing and tracking of multiple weak or time-varying frequency line components in underwater acoustic signals is the topic of this paper. We propose a method for automatic detection and tracking of multiple frequency lines in lofargram based on hidden Markov model (HMM). Instead of being directly subjected to frequency line tracking, the whole lofargram is first segmented into several sub-lofargrams. Then, the sub-lofargrams suspected to contain frequency lines are screened. In these sub-lofargrams, the HMM-based method is used for detection of multiple frequency lines. Using image stitching and statistical model method, the frequency lines with overlapping parts detected by different sub-lofargrams are merged to obtain the final detection results. The method can effectively detect multiple time-varying frequency lines of underwater acoustic signals while ensuring the performance under the condition of low signal-to-noise ratio (SNR). It can be concluded that the proposed algorithm can provide better multiple frequency lines sensing ability while greatly reducing the amount of calculations and providing potential techniques for feature sensing and tracking processing of unattended equipment such as sonar buoys and submerged buoys.

13.
Heliyon ; 10(9): e30080, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38765079

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel human coronavirus, which has triggered a global pandemic of the coronavirus infectious disease 2019 (COVID-19). Outbreaks of emerging infectious diseases continue to challenge human health worldwide. The virus conquers human cells through the angiotensin-converting enzyme 2 receptor-driven pathway by mostly targeting the human respiratory tract. Quercetin is a natural flavonoid widely represented in the plant kingdom. Cumulative evidence has demonstrated that quercetin and its derivatives have various pharmacological properties including anti-cancer, anti-hypertension, anti-hyperlipidemia, anti-hyperglycemia, anti-microbial, antiviral, neuroprotective, and cardio-protective effects, because it is a potential treatment for severe inflammation and acute respiratory distress syndrome. Furthermore, it is the main life-threatening condition in patients with COVID-19. This article provides a comprehensive review of the primary literature on the predictable effectiveness of quercetin and its derivatives docked to multi-target of SARS-CoV-2 and host cells via in silico and some of validation through in vitro, in vivo, and clinically to fight SARS-CoV-2 infections, contribute to the reduction of inflammation, which suggests the preventive and therapeutic latency of quercetin and its derived-products against COVID-19 pandemic, multisystem inflammatory syndromes (MIS), and long-COVID.

14.
Innovation (Camb) ; 5(1): 100540, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38144039

RESUMO

MXenes have aroused intensive enthusiasm because of their exotic properties and promising applications. However, to date, they are usually synthesized by etching technologies. Developing synthetic technologies provides more opportunities for innovation and may extend unexplored applications. Here, we report a bottom-up gas-phase synthesis of Cl-terminated MXene (Ti2CCl2). The gas-phase synthesis endows Ti2CCl2 with unique surface chemistry, high phase purity, and excellent metallic conductivity, which can be used to accelerate polysulfide conversion kinetics and dramatically prolong the cyclability of Li-S batteries. In-depth mechanistic analysis deciphers the origin of the formation of Ti2CCl2 and offers a paradigm for tuning MXene chemical vapor deposition. In brief, the gas-phase synthesis transforms the synthesis of MXenes and unlocks the hardly achieved potentials of MXenes.

15.
Cell Rep ; 43(6): 114333, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38865244

RESUMO

Histone methyltransferases (HMTs) are crucial in gene regulation and function, yet their role in natural killer (NK) cell biology within the tumor microenvironment (TME) remains largely unknown. We demonstrate that the HMT DOT1L limits NK cell conversion to CD49a+ CD49b+ intILC1, a subset that can be observed in the TME in response to stimulation with transforming growth factor (TGF)-ß and is correlated with impaired tumor control. Deleting Dot1l in NKp46-expressing cells reveals its pivotal role in maintaining NK cell phenotype and function. Loss of DOT1L skews NK cells toward intILC1s even in the absence of TGF-ß. Transcriptionally, DOT1L-null NK cells closely resemble intILC1s and ILC1s, correlating with altered NK cell responses and impaired solid tumor control. These findings deepen our understanding of NK cell biology and could inform approaches to prevent NK cell conversion to intILC1s in adoptive NK cell therapies for cancer.


Assuntos
Histona-Lisina N-Metiltransferase , Células Matadoras Naturais , Fenótipo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Animais , Camundongos , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral/imunologia , Camundongos Endogâmicos C57BL , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo
16.
Brain Behav ; 13(11): e3248, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37700566

RESUMO

BACKGROUND: Drawing can regulate emotions through venting or distraction. Distraction is more helpful for short-term emotion recovery; however, the sustainability of this difference is yet to be clarified. This study used functional near-infrared spectroscopy (fNIRS) to explore potential differences between venting and distraction. METHODS: A total of 44 college students participated in the experiment. After inducing fear by video, they were divided into two groups: The venting group drew their emotional experience, and the distraction group drew a house. Subsequently, the participants were instructed to relax by a brief video. RESULTS: Although the distraction group had a higher valence than the venting group at the end of the drawing activity, there was no difference between the two groups after a relaxation period. Additionally, the activation pattern of the prefrontal cortex differed between the two groups. Compared to the distraction group, the venting group had fewer channels with elevated prefrontal activity during drawing, suggesting less cognitive control, and had more channels with reduced prefrontal activity during relaxation, suggesting a higher level of relaxation. Drawing coding and fNIRS data were both associated with variations in valence. CONCLUSION: The less the cognitive control over emotion and the more free the expression of emotion during drawing, the higher the increase in valence; inversely, the more the cognitive control over emotion and the less free the expression of emotion, the lower the increase in valence.


Assuntos
Regulação Emocional , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Emoções/fisiologia , Córtex Pré-Frontal/fisiologia , Medo
17.
ACS Nano ; 17(15): 14695-14705, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37470340

RESUMO

Despite their high specific energy and great promise for next-generation energy storage, lithium-sulfur (Li-S) batteries suffer from polysulfide shuttling, slow redox kinetics, and poor cyclability. Catalysts are needed to accelerate polysulfide conversion and suppress the shuttling effect. However, a lack of structure-activity relationships hinders the rational development of efficient catalysts. Herein, we studied the Nb-V-S system and proposed a V-intercalated NbS2 (Nb3VS6) catalyst for high-efficiency Li-S batteries. Structural analysis and modeling revealed that undercoordinated sulfur anions of [VS6] octahedra on the surface of Nb3VS6 may break the catalytic inertness of the basal planes, which are usually the primary exposed surfaces of many 2D layered disulfides. Using Nb3VS6 as the catalyst, the resultant Li-S batteries delivered high capacities of 1541 mAh g-1 at 0.1 C and 1037 mAh g-1 at 2 C and could retain 73.2% of the initial capacity after 1000 cycles. Such an intercalation-induced high activity offers an alternative approach to building better Li-S catalysts.

18.
ACS Nano ; 17(3): 3143-3152, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36715422

RESUMO

The slow conversion and rapid shuttling of polysulfides remain major challenges that hinder the practical application of lithium-sulfur (Li-S) batteries. Efficient catalysts are needed to accelerate the conversion and suppress the shuttling. However, the lack of a rational understanding of catalysis poses obstacles to the design of catalysts, thereby limiting the rapid development of Li-S batteries. Herein, we theoretically analyze the modulation of the electronic structure of CoP1-xSx caused by the NiAs-to-MnP-type transition and its influence on catalytic activity. We found that the interacting d-orbitals of the active metal sites play a determining role in adsorption and catalysis, and the optimal dz2-, dxz-, and dyz-orbitals in an appropriately distorted five-coordinate pyramid enable higher catalytic activity compared with their parent structures. Finally, rationally designed catalysts and S were electrospun into carbonized nanofibers to form nanoreactor chains for use as cathodes. The resultant Li-S batteries exhibited superior properties over 1000 cycles with only a decay rate of 0.031% per cycle and demonstrated a high capacity of 887.4 mAh g-1 at a high S loading of 10 mg cm-2. The structural modulation and bonding analyses in this study provide a powerful approach for the rational design of Li-S catalysts.

19.
Dalton Trans ; 52(31): 10789-10794, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37477527

RESUMO

The slow redox kinetics and shuttling behavior of the intermediate lithium polysulfides constrain the further development of lithium-sulfur (Li-S) electrochemistry. A yolk-shell In2S3@void@carbon hybrid engineered to host the sulfur for Li-S batteries is prepared by using a multi-layered assembly method. The In2S3/electrolyte interface acted as powerful adsorption and activation sites for soluble polysulfides, which is demonstrated using density functional theory (DFT) calculations. Moreover, the carbon shell provides redundancy for volume-changes during the cycles. The results indicate that yolk-shell In2S3@S@C hybrid cathode shows good reversibility and rate capability, which preserves 563.6 mA h g-1 after 500 cycles at 0.5 C, indicating the potential for developing high-performance battery systems.

20.
ACS Appl Mater Interfaces ; 15(17): 21040-21048, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37074218

RESUMO

Lithium-sulfur (Li-S) batteries demonstrate great potential for next-generation electrochemical energy storage systems because of their high specific energy and low-cost materials. However, the shuttling behavior and slow kinetics of intermediate polysulfide (PS) conversion pose a major obstacle to the practical application of Li-S batteries. Herein, CrP within a porous nanopolyhedron architecture derived from a metal-organic framework (CrP@MOF) is developed as a highly efficient nanocatalyst and S host to address these issues. Theoretical and experimental analyses demonstrate that CrP@MOF has a remarkable binding strength to trap soluble PS species. In addition, CrP@MOF shows abundant active sites to catalyze the PS conversion, accelerate Li-ion diffusion, and induce the precipitation/decomposition of Li2S. As a result, the CrP@MOF-containing Li-S batteries demonstrate over 67% capacity retention over 1000 cycles at 1 C, ∼100% Coulombic efficiency, and high rate capability (674.6 mAh g-1 at 4 C). In brief, CrP nanocatalysts accelerate the PS conversion and improve the overall performance of Li-S batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA