Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Small ; 19(3): e2205416, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36344460

RESUMO

Due to the rapid growth in the demand for high-energy-density Lithium (Li) batteries and insufficient global Li reserves, the anode-free Li metal batteries are receiving increasing attention. Various strategies, such as surface modification and structural design of copper (Cu) current collectors, have been proposed to stabilize the anode-free Li metal batteries. Unfortunately, the mechanism of Li deposition on the Cu surfaces with the different Miller indices is poorly understood, especially on the atomic scale. Here, the large-scale molecular dynamics simulations of Li deposition on the Cu substrates are performed in the anode-free Li metal batteries. The results show that the surface properties of the Li panel can be altered through the different Cu substrate surfaces. Through surface similarity analysis, potential energy distributions,and inhomogeneous deposition simulations, it is found that the Li atoms exhibit different potential energy variances and kinetic characteristics on the different Cu surfaces. Furthermore, a proposal to reduce the fraction of the (110) facet in commercial Cu foils is made to improve the reversibility and stability of Li plating/stripping in the anode-free Li metal batteries.

2.
Chemistry ; 22(32): 11357-64, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27381513

RESUMO

TiO2 nanostructures are being sought after as flexibly utilizable building blocks for the fabrication of the mesoporous thin-film photoelectrodes that are the heart of the third-generation photovoltaic devices, such as dye-sensitized solar cells (DSSCs), quantum-dot-sensitized solar cells (QDSSCs), and the recently promoted perovskite-type solar cells. Here, we report deliberate tailoring of TiO2 nanostructures for superior photovoltaic cells. Morphology engineering of TiO2 nanostructures is realized by designing synthetic protocols in which the precursor hydrolysis, crystal growth, and oligomer self-organization are precisely controlled. TiO2 nanostructures in forms varying from isolated nanocubes, nanorods, and cross-linked nanorods to complex hierarchical structures and shape-defined mesoporous micro-/nanostructures were successfully synthesized. The photoanodes made from the shape-defined mesoporous TiO2 microspheres and nanospindles presented superior performances, owing to the well-defined overall shapes and the inner ordered nanochannels, which allow not only a high amount of dye uptake, but also improved visible-light absorption. This study provides a new way to seek an optimal synthetic protocol to meet the required functionality of the nanomaterials.

3.
Micromachines (Basel) ; 14(3)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36985048

RESUMO

The problems of the recast layer, oxide layer, and heat-affected zone (HAZ) in conventional laser machining seriously impact material properties. Coaxial waterjet-assisted laser scanning machining (CWALSM) can reduce the conduction and accumulation of heat in laser machining by the high specific heat capacity of water and can realize the machining of nickel-based special alloy with almost no thermal damage. With the developed experimental setup, the laser ablation threshold and drilling experiments of the K4002 nickel-based special alloy were carried out. The effects of various factors on the thermal damage thickness were studied with an orthogonal experiment. Experimental results have indicated that the ablation threshold of K4002 nickel-based special alloy by a single pulse is 4.15 J/cm2. The orthogonal experiment results have shown that the effects of each factor on the thermal damage thickness are in the order of laser pulse frequency, waterjet speed, pulse overlap rate, laser pulse energy, and focal plane position. When the laser pulse energy is 0.21 mJ, the laser pulse frequency is 1 kHz, the pulse overlap is 55%, the focal plane position is 1 mm, and the waterjet speed is 6.98 m/s, no thermal damage machining can be achieved. In addition, a comparative experiment with laser drilling in the air was carried out under the same conditions. The results have shown that compared with laser machining in the air, the thermal damage thickness of CWALSM is smaller than 1 µm, and the hole taper is reduced by 106%. There is no accumulation and burr around the hole entrance, and the thermal damage thickness range is 0-0.996 µm. Furthermore, the thermal damage thickness range of laser machining in the air is 0.499-2.394 µm. It has also been found that the thermal damage thickness is greatest at the entrance to the hole, decreasing as the distance from the entrance increases.

4.
Materials (Basel) ; 16(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37176243

RESUMO

Due to their potential improvement of high-temperature properties, the refractory metal hafnium (Hf) and the rare earth holmium (Ho) have attracted much attention. In the present research, NiAl-Cr(Mo) eutectic alloys with different Ho and Hf additions were fabricated by conventional smelting method and heat-treated to study the synergetic influence of strengthening elements and heat treatment. The samples were characterized using XRD, SEM, and TEM, and the three-point bending test was performed to obtain fracture toughness. The results demonstrate that Hf addition leads to the formation of Ni2AlHf Heusler phase and that Ho promoted the formation of Ni2Al3Ho phase. The microstructure of the alloy is affected by thermal treatment, with the coarsening of eutectic lamellae after heat treatment. The mechanical properties are improved by Hf and Ho additions, with increased fracture toughness. Overall, this study provides insights into the microstructure and properties of NiAl-Cr(Mo) eutectic alloys and highlights the potential of Hf and Ho addition to improve room-temperature properties. Specifically, the as-cast NiAl-Cr(Mo)-Hf eutectic alloy contains a relatively fine NiAl/Cr(Mo) eutectic lamella but coarse eutectic cell with Ni2AlHf phase embellished along the cell boundary. Minor Ho addition induces the formation of Ni2Al3Ho phase, which leads to the coarsening of the intercellular region but contributes to the refining of eutectic cell. In addition, the synergetic effect of Ho and Hf promotes the precipitation of Ni2Al3Ho and Ni2AlHf phases in the intercellular zone and increases the interface dislocations. Heat treatment benefits the solid solution of Ni2Al3Ho and Ni2AlHf phases, which improves their size and distribution by secondary precipitation. The Ni2AlHf phase in the NiAl-Cr(Mo)-Hf eutectic alloy becomes fine and uniformly distributed, but the NiAl/Cr(Mo) eutectic lamella in the eutectic cell becomes coarse. In comparison, heat treatment mainly optimizes the size and distribution of the Ni2Al3Ho and Ni2AlHf phases in the NiAl-Cr(Mo)-Hf-Ho eutectic alloy. Furthermore, heat treatment helps to eliminate the interface dislocations in the large NiAl precipitates and the NiAl/Cr(Mo) phase interfaces, which also contributes to fracture toughness by decreasing stress concentration. Minor Ho addition decreases the fracture toughness of as-cast NiAl-Cr(Mo)-Hf eutectic alloy from 6.7 to 6.1 MPa·m1/2, which should be ascribed to the coarsened intercellular region including aggregated Ni2Al3Ho and Ni2AlHf phases. However, minor Ho-doped NiAl-Cr(Mo)-Hf eutectic alloy obtained the highest fracture toughness of 8.2 MPa·m1/2 after heat treatment. This improved fracture toughness should be mainly attributed to the refined and well-distributed Ni2Al3Ho and Ni2AlHf phases in the heat-treated NiAl-Cr(Mo)-Hf-Ho eutectic alloy.

5.
Materials (Basel) ; 16(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834543

RESUMO

This paper presents a hybrid manufacturing process for the preparation of complex cavity structure parts with high surface quality. Firstly, laser precision packaging technology is utilized to accurately connect a thin plate to a substrate with microchannel. Secondly, Direct Metal Laser-Sintering (DMLS) technology is utilized to completely shape the part. The morphology and microstructure of laser encapsulated specimens and DMLS molded parts were investigated. The results show that the thin plate and the substrate can form a good metallurgical bond. The lowest surface roughness of the DMLS molded parts was 1.18 µm. The perpendicularity between the top of the microchannel and the side wall was optimal when the laser power was 240 W. Consequently, the hybrid manufacturing process effectively solves the problems of poor surface quality and powder sticking of closed inner cavities. The method effectively eliminates the defects of adhesive powder in the inner cavity of the DMLS microchannel, improves the finish, and solves the problem that mechanical tools cannot be processed inside the microchannel, which lays the foundation for the research of DMLS high-quality microchannel process.

6.
Materials (Basel) ; 16(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37444884

RESUMO

Repairing processing is a significant method for damaged high-cost Ti-6Al-4V components to decrease economic loss, which usually utilizes a welding technique. For a large-size structural component, welding processing is commonly completed in air conditioning, which makes it difficult to avoid welding defects. To this end, an appropriate matching technique is important for improving welding performance. In the present research, asynchronized laser shock peening (ALSP) and synchronized laser shock peening (SLSP) techniques were utilized to decrease the influence of macro welding defects on laser-welded Ti-6Al-4V joints. The results show that SLSP has a greater effect on inducing surface plastic deformation on Ti-6Al-4V joints with a pitting depth of more than 25 microns while ALSP can lead to a pitting depth of about 15 microns. Through micro-CT observation a long hot crack exists in the central area of as-welded joints with a length of about 2.24 mm, accompanied by lots of pores in different sizes on double sides. After ALSP processing, some pores are eliminated while others are enlarged, and one-side crack tips present closure morphology. However, some microcracks exist on the side-wall of hot cracks. With the influence of SLSP, significant shrinkage of pores can be observed and both sides of crack tips tend to be closed, which presents a better effect than ALSP processing. Moreover, greater effects of grain refinement and thermal stress release could be achieved by SLSP processing than ALSP, which can be ascribed to dynamic recrystallization. For the as-welded joint, the ultimate tensile strength (UTS) and elongation (EL) values are 418 MPa and 0.73%, respectively. The values of UTS and EL in the ALSP processed joint are increased to 437 MPa and 1.07%, which are 4.55% and 46.48% higher than the as-welded joint, respectively. Such values after SLSP processing are 498 MPa and 1.23%, which are 19.14% and 68.49% higher than the as-welded joint, respectively.

7.
Front Chem ; 11: 1190630, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37265590

RESUMO

Titanium alloy scaffolds with a porous structure have attracted much attention in bone defect repair. However, which pore structure is more beneficial to bone defect repair is controversial. In the present research, the Ti6Al4V alloy porous scaffolds with gradient pore sizes were designed and fabricated. The microstructure characterization, tests of mechanical properties, and in vitro and in vivo experiments have been performed to systematically evaluate the effect of pore size on osteoinduction and osteogenesis. The results revealed that the contact angle with water, compressive strength, and elastic modulus of the Ti6Al4V alloy porous scaffolds decreased gradually with the increase of pore size. However, there were obvious drops when the pore size of the porous scaffold was around 600 µm. As the pore size increased, the proliferation and integrin ß1 of RAW 264.7 macrophages seeded on Ti6Al4V alloy porous scaffolds increased at first, reaching a maximum value at a pore size of around 600 µm, and then decreased subsequently. The proliferation, integrin ß1, and osteogenic gene-related expressions of Bone marrow mesenchymal stem cells (BMSCs) seeded on Ti6Al4V alloy porous scaffolds with different pore sizes all exhibited similar variations which rose with increased pore size firstly, obtaining the maximum value at pore size about 600 µm, and then declined. The in vivo experiments confirmed the in vitro results, and the Ti6Al4V alloy porous scaffold with a pore size of 600 µm possessed the better capability to induce new bone formation. Therefore, for the design of Ti6Al4V alloy with a regular porous scaffold, the surface morphology, porosity, strength, and elastic modulus should be considered systematically, which would determine the capability of osteoinduction and osteogenesis.

8.
Int J Nanomedicine ; 18: 5095-5117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705868

RESUMO

Purpose: Puerarin is the main isoflavone extracted from Radix Puerariae lobata (Willd.) and exerts a strong protective effect on endothelial cells. This isoflavone also exerts proven angiogenic effects; however, the potential underlying mechanism has not been fully explored. Here in this work, we aimed to determine the proangiogenesis effect of a puerarin-attached lignin nanoparticle-incorporated hydrogel and explore the underlying mechanism. Materials and Methods: Puerarin-attached lignin nanoparticles were fabricated and mixed with the GelMA hydrogel. After the hydrogel was characterized, the angiogenic effect was evaluated in a mouse hind-limb ischemia model. To further explore the mechanism of angiogenesis, human endothelial cell line EA.hy926 was exposure to different concentrations of puerarin. Wound healing assays and tube formation assays were used to investigate the effects of puerarin on cell migration and angiogenesis. qPCR and Western blotting were performed to determine the changes in the levels of angiogenesis indicators, autophagy indicators and PPARß/δ. 3-MA was used to assess the role of autophagy in the puerarin-mediated angiogenesis effect in vivo and in vitro. Results: The hydrogel significantly improved blood flow restoration in mice with hind-limb ischemia. This effect was mainly due to puerarin-mediated increases in the angiogenic capacity of endothelial cells and the promotion of autophagy activation. A potential underlying mechanism might be that puerarin-mediated activation of autophagy could induce an increase in PPARß/δ expression. Conclusion: The puerarin-attached lignin nanoparticle-incorporated hydrogel effectively alleviated blood perfusion in mice with hind-limb ischemia. Puerarin has a prominent proangiogenic effect. The potential mechanisms might be that puerarin-mediated autophagy activation and increase in PPARß/δ.


Assuntos
Isoflavonas , Nanopartículas , PPAR beta , Humanos , Animais , Camundongos , Hidrogéis , Lignina , Células Endoteliais , Isoflavonas/farmacologia , Autofagia , Modelos Animais de Doenças , Isquemia/tratamento farmacológico
9.
Materials (Basel) ; 16(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37110085

RESUMO

Titanium (Ti) and its alloys have been widely employed in aeronautical, petrochemical, and medical fields owing to their fascinating advantages in terms of their mechanical properties, corrosion resistance, biocompatibility, and so on. However, Ti and its alloys face many challenges, if they work in severe or more complex environments. The surface is always the origin of failure for Ti and its alloys in workpieces, which influences performance degradation and service life. To improve the properties and function, surface modification becomes the common process for Ti and its alloys. The present article reviews the technology and development of laser cladding on Ti and its alloys, according to the cladding technology, cladding materials, and coating function. Generally, the laser cladding parameters and auxiliary technology could influence the temperature distribution and elements diffusion in the molten pool, which basically determines the microstructure and properties. The matrix and reinforced phases play an important role in laser cladding coating, which can increase the hardness, strength, wear resistance, oxidation resistance, corrosion resistance, biocompatibility, and so on. However, the excessive addition of reinforced phases or particles can deteriorate the ductility, and thus the balance between functional properties and basic properties should be considered during the design of the chemical composition of laser cladding coatings. In addition, the interface including the phase interface, layer interface, and substrate interface plays an important role in microstructure stability, thermal stability, chemical stability, and mechanical reliability. Therefore, the substrate state, the chemical composition of the laser cladding coating and substrate, the processing parameters, and the interface comprise the critical factors which influence the microstructure and properties of the laser cladding coating prepared. How to systematically optimize the influencing factors and obtain well-balanced performance are long-term research issues.

10.
Materials (Basel) ; 16(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36614608

RESUMO

Carbon fiber reinforced thermosetting composites (CFRTS) and TC4 alloy are important structural materials for lightweight manufacturing. The hybrid structure of these two materials has been widely used in the aerospace field. However, the CFRTS-TC4 alloy joint formed by the traditional connection method has many challenges, such as poor environmental adaptability and stress concentration. Laser micro-texturing of metal surface-assisted laser connection of CFRTS and TC4 alloy has great potential in improving joint strength. In order to study the effect of laser micro-texturing on the laser bonding of CFRTS and TC4 alloy, the simulation and experimental research of laser welding of TC4 alloy and CFRTS based on laser micro-textures with different scanning spacings were carried out, and the interface hybrid pretreatment method of laser cleaning and laser plastic-covered treatment was introduced to assist the high-quality laser bonding of heterogeneous joints. The results showed that the established finite element model of CFRTS-TC4 alloy laser welding can predict the temperature field distribution of the joint during the welding process and reflect the forming mechanism of the joint. The laser micro-textures with different scanning spacings will lead to a difference in the temperature field distribution on the polyamide (PA6) interface, which leads to a change in heat input on the CFRTS surface. When the laser scanning spacing is 0.3 mm, the joint strength can reach 14.3 MPa. The failure mechanism of the joint mainly includes the cohesive failure of the internal tear of the carbon fiber and the interfacial failure of the interface between the PA6 resin and the TC4 alloy.

11.
Bioengineered ; 13(1): 164-177, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34847836

RESUMO

Angiogenesis plays an important role in tissue development and repair, and how to regulate angiogenesis effectively is a widely studied problem in the biomedical field. In recent years, the role of autophagy in vascular endothelial cells has attracted extensive attention. Icariin (ICA) is a traditional Chinese medicine that has been proven to have outstanding protective effects on the vascular system and to regulate cellular autophagy effectively. However, at present, it has not been reported whether ICA can affect the angiogenic ability of endothelial cells by affecting autophagy. In this study, we aimed to investigate whether ICA affects the angiogenesis capacity of EA.hy926 human vascular endothelial cells through autophagy and explain the underlying potential mechanisms. First, we determined that ICA at appropriate concentrations has the ability to promote cell migration and angiogenesis using wound healing assays and tube formation assays. Then, at the molecular level, we observed the upregulation of VEGFA, VEGFR2, ANGI, ANGII, and Tie2 mRNA and detected the upregulation of TGFß1 protein by Western blotting. We also demonstrated that angiogenic concentrations of ICA can effectively activate autophagy. The autophagy inhibitor 3-MA significantly suppressed TGFß1 expression and tube formation in EA.hy926 cells. Overall, we hope that our studies might help to further understand the effect of ICA on vascular endothelial cells and provide a theoretical basis for future angiogenic applications of ICA.


Assuntos
Proteínas Angiogênicas/genética , Células Endoteliais/citologia , Flavonoides/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Angiopoietina-1/genética , Angiopoietina-2/genética , Autofagia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Receptor TIE-2/genética , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
12.
Materials (Basel) ; 15(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234028

RESUMO

The carbon fiber-reinforced composite (CFRP) has the properties of a high specific strength, low density and excellent corrosion resistance; it has been widely used in aerospace and automobile lightweight manufacturing as an important material. To improve the CFRP cutting quality in the manufacturing process, a nanosecond laser with a wavelength of 532 nm was applied to cut holes with a 2-mm-thick CFRP plate by using laser rotational cutting technology. The influence of different parameters on the heat-affected zone, the cutting surface roughness and the hole taper was explored, and the cutting process parameters were optimized. With the optimized cutting parameters, the minimum value of the heat-affected zone, the cutting surface roughness and the hole taper can be obtained, which are 71.7 µm, 2.68 µm and 0.64°, respectively.

13.
Micromachines (Basel) ; 14(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36677085

RESUMO

Carbon fiber-reinforced composites are widely used in automobile, aerospace and military lightweight manufacturing due to their excellent mechanical properties such as light weight, excellent fracture resistance, corrosion resistance and wear resistance, etc. However, because of their high hardness, anisotropy and low interlayer strength characteristics, there are many problems with machine carbon fiber-reinforced composites with traditional methods. As a non-contact processing technology, laser machining technology has lots of advantages in carbon fiber-reinforced composites processing. However, there are also some defects produced in laser machining process such the heat affected zone, delamination and fiber extraction due to the great difference of physical properties between the carbon fibers and the resin matrix. To improve the quality of carbon fiber-reinforced composites laser machining, lots of works have been carried out. In this paper, the research progress of carbon fiber-reinforced composites laser machining parameters optimization and numerical simulation was summarized, the characteristics of laser cutting carbon fiber-reinforced composites and cutting quality influence factors were discussed, and the developing trend of the carbon fiber-reinforced composites laser cutting was prospected.

14.
Materials (Basel) ; 15(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35591514

RESUMO

Depolarization behavior is one of the main shortcomings of (Bi0.5Na0.5)TiO3-based ceramics. Considering the undesirable efficiency of traditional modification methods, in this paper a series of 0-3 type ceramic composites 0.85(Bi0.5Na0.5)TiO3-0.11(Bi0.5K0.5)TiO3-0.04BaTiO3-x mol% ZnO (BNKT-BT-xZnO)) were synthesized by introducing ZnO nanoparticles. The results of the X-ray diffraction pattern (XRD) and energy dispersive spectroscopy (EDS) demonstrate that the majority of ZnO nanoparticles grow together to form enrichment regions, and the other Zn2+ ions diffuse into the matrix after sintering. With ZnO incorporated, the ferroelectric-ergodic relaxor transition temperature, TF-R, and depolarization temperature, Td, increase to above 120 °C and 110 °C, respectively. The research on temperature-dependent P-E loops verifies an attenuated ergodic degree induced by ZnO incorporation. For this reason, piezoelectric properties can be well-maintained below 110 °C. The electron backscatter diffraction (EBSD) was employed to investigate the stress effect. Orientation maps reveal the random orientation of all grains, excluding the impact of texture on depolarization. The local misorientation image shows that more pronounced strain appears near the boundaries, implying stress is more concentrated there. This phenomenon supports the hypothesis that potential stress suppresses depolarization. These results demonstrate that the depolarization behavior is significantly improved by the introduction of ZnO. The composites BNKT-BT-xZnO are promising candidates of lead-free ceramics for practical application in the future.

15.
Materials (Basel) ; 14(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34772192

RESUMO

The characteristic transition from ferroelectric (FE) to ergodic relaxor (ER) state in (Bi0.5Na0.5)TiO3 (BNT) based lead-free ceramics provides an efficient approach to bring a highly ordered phase back to a disordered one. It would be rational to utilize this transition to improve relevant non-piezoelectric properties based on domain decomposition. In this work, different La contents were introduced to 0.93(Bi0.5Na0.5)TiO3-0.07Ba(Ti0.945Zr0.055)O3 ceramics (BNT-BZT-xLa) to induce evolution of ergodic degree. The results reveal that with increasing La content, both the FE-ER transition temperature TF-R and depolarization temperature Td shift towards room temperature, implying a deepened ergodic degree. By modulation of ergodic degree, thermally stimulated depolarization current experiment shows a higher current density peak, and corresponding pyroelectric coefficient increases from 2.46 to 2.81 µC/(cm2∙°C) at Td. For refrigeration, the indirect measurement demonstrates the ΔT maximum increases from 1.1 K to 1.4 K, indicating an enhanced electrocaloric effect. Moreover, the optimized energy storage effect is observed after La doping. With appearance of "slimmer" P-E loops, both calculated recoverable energy storage density Wrec and storage efficiency η increase to 0.23 J/cm3 and 22.8%, respectively. These results denote La doping conduces to the improvement of non-piezoelectric properties of BNT-based ceramics in a certain range. Therefore, La doping should be an adopted modification strategy for lead-free ceramics used in areas like refrigerator and pulse capacitors.

16.
Micromachines (Basel) ; 12(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672394

RESUMO

In the present research, an iterative numerical model is proposed to investigate the nanosecond pulsed laser ablation (PLA) mechanism of the DD6 single-crystal superalloy. In the numerical model, two subroutines are introduced to trace the moving boundary and update the thermal load. The iteration between the main governing equation and the two subroutines enables the PLA numerical simulation to consider material moving front and effect of comprehensive heat dissipation including thermal convection and radiation. The basic experimental results exhibit a good agreement with simulation results which indicates the good accuracy of the simulation model. Therefore, the PLA mechanism of the DD6 single-crystal superalloy is studied base on the improved iterative model, which indicates the evolution of temperature field, ablation zone morphology, formation of recast layer and heat-affected zone are closely related with time. The temperature of the laser spot center increases sharply at the first stage, reaching a maximum value of 5252 K, and then decreases gradually. The thermal dissipation postpones the ablation rate but promotes the formation of a recast layer and heat-affected zone. Due to the evaporation and thermal dissipation, the depth of the molten layer exhibits two rapid increasing stages. The comprehensive analysis of the PLA processing by the improved simulation model helps the understanding of the intrinsic mechanism, which would contribute to the further optimizing parameters of PLA fabrication of the DD6 single-crystal superalloy.

17.
Micromachines (Basel) ; 12(2)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670372

RESUMO

In the present research, the carbon fiber reinforced thermoplastic (CFRTP) was laser joined with the Al alloy whose joining interface was pretreated by laser micro-texturing, anodizing, and hybrid of laser micro-texturing and anodizing. The surface morphology of the pretreated Al joining interface and bonding strength of the corresponding Al/CFRTP butt joint were investigated. The results show that the laser micro-texturing has fabricated the micro-pit or micro-furrow in the Al joining interface. With the increasing of laser scanning times, the size of the micro-pit or micro-furrow decreases, when the laser scanning distance is constant. The bonding strength of the Al/CFRTP butt joint with Al joining interface pretreated by micro-texturing fluctuates with the increasing of laser scanning distance and times, reaching the maximum value of 20 MPa at laser scanning distance of 0.1 mm and 1 time. The anodizing pretreatment has formed the Al2O3 oxide layer on the Al joining interface. The Al/CFRTP butt joint with Al joining interface pretreated by anodizing obtains the maximum bonding strength of 11 MPa at anodizing time of 10 min. The hybrid pretreatment of micro-texturing and subsequent anodizing fabricates the regular grid structure with smooth micro-furrow and micro-pit, while the hybrid pretreatment of anodizing and subsequent micro-texturing fabricates the Al joining interface with explosive micro-pit and micro-furrow. The bonding strength of the Al/CFRTP butt joint with hybrid-pretreated Al joining interface is relative better than that of the Al/CFRTP butt joint with anodizing-pretreated Al joining interface but almost lower than that of the Al/CFRTP butt joint with micro-texturing pretreated Al joining interface. Such results should be attributed to the surface morphology of the Al joining interface.

18.
Mater Today Bio ; 12: 100172, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34901822

RESUMO

The use of vaginal surgical mesh to treat pelvic organ prolapse (POP) has been associated with high rates of mesh-related complications. In the present study, we prepared new kinds of meshes based on bacterial cellulose (BC) and collagen-coated BC (BCCOL) using a laser cutting method and perforation technique. The mechanical properties of pre-implanted BC meshes, including breaking strength, suture strength and rigidity, were equal to or exceeded those of available clinically used polypropylene meshes. An in vitro cellular assay revealed that BCCOL meshes exhibited enhanced biocompatibility by increasing collagen secretion and cell adhesion. Both BC and BCCOL meshes only caused weak inflammation and were surrounded by newly formed connective tissue composed of type I collagen after implantation in a rabbit subcutaneous model for one week, demonstrating that the novel mesh is fully biocompatible and can integrate into surrounding tissues. Furthermore, a long-term (ninety days) ewe vaginal implantation model was used to evaluate foreign body reactions and suitability of BC and BCCOL meshes as vaginal meshes. The results showed that the tissue surrounding the BC meshes returned to its original physiology as muscle tissue, indicating the excellent integration of BC meshes into the surrounding tissues without triggering severe local inflammatory response post-implantation. The collagen coating appeared to induce a chronic inflammatory response due to glutaraldehyde remnants. The present exploratory research demonstrated that the developed BC mesh might be a suitable candidate for treating POP.

19.
Polymers (Basel) ; 13(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34771308

RESUMO

The limitations of hydrophilicity, strength, antibacterial activity adsorption performance of the biobased and biocompatible polymer materials, such as polyhydroxyalkanoates (PHAs), significantly restrict their wider applications especially in medical areas. In this paper, a novel composite membrane with high antibacterial activity and platelet adsorption performance was prepared based on graphene oxide (GO), MXene and 3-hydroxybutyrate-co-hydroxyvalerate (PHBV), which are medium-chain-length-copolymers of PHA. The GO/MXene nanosheets can uniformly inset on the surface of PHBV fibre and give the PHBV-GO/MXene composite membranes superior hydrophilicity due to the presence of hydroxyl groups and terminal oxygen on the surface of nanosheets, which further provides the functional site for the free radical polymerization of ester bonds between GO/MXene and PHBV. As a result, the tensile strength, platelet adsorption, and blood coagulation time of the PHBV-GO/MXene composite membranes were remarkably increased compared with those of the pure PHBV membranes. The antibacterial rate of the PHBV-GO/MXene composite membranes against gram-positive and gram-negative bacteria can reach 97% due to the antibacterial nature of MXene. The improved strength, hydrophilicity, antibacterial activity and platelet adsorption performance suggest that PHBV-GO/MXene composite membranes might be ideal candidates for multifunctional materials for haemostatic applications.

20.
Mater Sci Eng C Mater Biol Appl ; 131: 112499, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34857285

RESUMO

Porous Ti6Al4V scaffolds are characterized by high porosity, low elastic modulus, and good osteogenesis and vascularization, which are expected to facilitate the repair of large-scale bone defects in future clinical applications. Ti6Al4V scaffolds are divided into regular and irregular structures according to the pore structure, but the pore structure more capable of promoting bone regeneration and angiogenesis has not yet been reported. The purpose of this study was to explore the optimal pore structure and pore size of the Ti6Al4V porous scaffold for the repair of large-area bone defects and the promotion of vascularization in the early stage of osteogenesis. 7 groups of porous Ti6Al4V scaffolds, named NP, R8, R9, R10, P8, P9 and P10, were fabricated by Electron-beam-melting (EBM). Live/dead staining, immunofluorescence staining, SEM, CCK8, ALP, and PCR were used to detect the adhesion, proliferation, and differentiation of BMSCs on different groups of scaffolds. Hematoxylin-eosin (HE) staining and Van Gieson (VG) staining were used to detect bone regeneration and angiogenesis in vivo. The research results showed that as the pore size of the scaffold increased, the surface area and volume of the scaffold gradually decreased, and cell proliferation ability and cell viability gradually increased. The ability of cells to vascularize on scaffolds with irregular pore sizes was stronger than that on scaffolds with regular pore sizes. Micro-CT 3D reconstruction images showed that bone regeneration was obvious and new blood vessels were thick on the P10 scaffold. HE and VG staining showed that the proportion of bone area on the scaffolds with irregular pores was higher than that on scaffolds with regular pores. P10 had better mechanical properties and were more conducive to bone tissue ingrowth and blood vessel formation, thereby facilitating the repair of large-area bone defects.


Assuntos
Regeneração Óssea , Alicerces Teciduais , Ligas , Osteogênese , Porosidade , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA