Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 78(12): 2983-2994, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37923362

RESUMO

BACKGROUND: Adjuvant addition of approved drugs or foodborne additives to colistin might be a cost-effective strategy to overcome the challenge of plasmid-mediated mobile colistin resistance gene emergence, which poses a threat in the clinic and in livestock caused by infections with Gram-negative bacteria, especially carbapenem-resistant Enterobacteriaceae. METHODS: Chequerboard assay was applied to screen the colistin adjuvants from natural compounds. The killing-time curve, combined disc test and membrane permeation assay were conducted to identify the synergy efficacy of thymol and colistin in vitro. Thin-layer chromatography (TLC), LC-MS and fluorescence spectra were used to indicate the interaction of thymol and MCR-1. The potential binding sites were then investigated by molecular simulation dynamics. Finally, a thymol nanoemulsion was prepared with high-pressure homogenization as the clinical dosage form. RESULTS: Thymol presented an excellent synergistic effect in vitro with colistin against Salmonella enterica serovar Typhimurium and Escherichia coli bacteria. Thymol addition, forming a complex with MCR-1, might interfere with the efficacy of MCR-1. Moreover, thymol strengthened colistin activity associated with potentiating membrane damage, destroying the biofilm and enhancing reactive oxygen species-mediated oxidative damage. Thymol nanoemulsion combined with colistin remarkably prevented the intestinal damage caused by S. Typhimurium infection, resulting in a survival rate higher than 60%. CONCLUSIONS: This study achieved a promising thymol oral formulation as colistin adjuvant to combat S. Typhimurium infection, which could be used to extend the lifespan of colistin in clinical veterinary medicine.


Assuntos
Proteínas de Escherichia coli , Infecções por Salmonella , Humanos , Colistina/farmacologia , Antibacterianos/farmacologia , Timol/farmacologia , Sorogrupo , Farmacorresistência Bacteriana/genética , Salmonella typhimurium/genética , Escherichia coli/genética , Plasmídeos , Testes de Sensibilidade Microbiana , Proteínas de Escherichia coli/genética
2.
Molecules ; 28(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36838612

RESUMO

As a major virulence factor of Listeria monocytogenes (L. monocytogenes), listeriolysin O (LLO) can assist in the immune escape of L. monocytogenes, which is critical for the pathogen to evade host immune recognition, leading to various infectious diseases. Cinnamon twig (CT), as a traditional medicine, has been widely used in clinics for multiple functions and it has exhibited excellent safety, efficacy and stability. There are few reports on the effects of the extracts of traditional medicine on bacterial virulence factors. CT has not been reported to be effective in the treatment of L. monocytogenes infection. Therefore, this study aims to explore the preventive effect of CT against L. monocytogenes infection in vivo and in vitro by targeting LLO. Firstly, a hemolysis assay and a cell viability determination are used to detect the effect of CT extract on the inhibition of the cytolytic activity of LLO. The potential mechanism through which CT extract inhibits LLO activity is predicted through network pharmacology, molecular docking assay, real-time polymerase chain reaction (RT-PCR), Western blotting and circular dichroism (CD) analysis. The experimental therapeutic effect of CT extract is examined in a mouse model infected with L. monocytogenes. Then, the ingredients are identified through a high-performance liquid chromatography (HPLC) and thin layer chromatography (TLC) analysis. Here we find that CT extract, containing mainly cinnamic acid, cinnamaldehyde, ß-sitosterol, taxifolin, catechin and epicatechin, shows a potential inhibition of LLO-mediated hemolysis without any antimicrobial activity. The results of the mechanism research show that CT extract treatment can simultaneously inhibit LLO expression and oligomerization. Furthermore, the addition of CT extract led to a remarkable alleviation of LLO-induced cytotoxicity. After treatment with CT extract, the mortality, bacterial load, pathological damage and inflammatory responses of infected mice are significantly reduced when compared with the untreated group. This study suggests that CT extract can be a novel and multicomponent inhibitor of LLO with multiple strategies against L. monocytogenes infection, which could be further developed into a novel treatment for infections caused by L. monocytogenes.


Assuntos
Listeria monocytogenes , Listeriose , Animais , Camundongos , Cinnamomum zeylanicum , Simulação de Acoplamento Molecular , Hemólise , Listeriose/tratamento farmacológico , Listeriose/microbiologia , Proteínas Hemolisinas , Fatores de Virulência/metabolismo
3.
Molecules ; 27(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36014299

RESUMO

Pneumolysin (PLY) is a significant virulence factor of Streptococcus pneumoniae (S. pneumoniae), able to break through the defense system of a host and mediate the occurrence of a series of infections. Therefore, PLY as the most ideal target to prevent S. pneumoniae infection has received more and more attention and research. Corilagin is a tannic acid that exhibits excellent inhibition of PLY oligomers without bacteriostatic activity to S. pneumoniae. Herein, hemolytic activity assays, cell viability tests and western blot experiments are executed to evaluate the antivirulence efficacy of corilagin against PLY in vitro. Colony observation, hematoxylin and eosin (H&E) staining and cytokines of bronchoalveolar lavage fluid (BALF) are applied to assess the therapeutic effect of corilagin in mice infected by S. pneumoniae. The results indicate the related genes of corilagin act mainly via enrichment in pathways associated with pneumonia disease. Furthermore, molecular docking and molecular dynamics simulations show that corilagin might bind with domains 3 and 4 of PLY and interfere with its hemolytic activity, which is further confirmed by the site-directed mutagenesis of PLY. Additionally, corilagin limits PLY oligomer production without impacting PLY expression in S. pneumoniae cultures. Moreover, corilagin effectively relieves PLY-mediated cell injury without any cytotoxicity, even then reducing the colony count in the lung and the levels of pro-inflammatory factors in BALF and remarkably improving lung lesions. All the results demonstrate that corilagin may be a novel strategy to cope with S. pneumoniae infection by inhibiting PLY oligomerization.


Assuntos
Infecções Pneumocócicas , Estreptolisinas , Animais , Proteínas de Bactérias/metabolismo , Glucosídeos , Hemólise , Taninos Hidrolisáveis , Camundongos , Simulação de Acoplamento Molecular , Infecções Pneumocócicas/tratamento farmacológico , Streptococcus pneumoniae , Estreptolisinas/metabolismo , Estreptolisinas/farmacologia
4.
Phytomedicine ; 130: 155768, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38815408

RESUMO

BACKGROUND: Polymyxin E is widely recognized as a last resort for treating multidrug-resistant gram-negative bacteria. Unfortunately, the effectiveness of polymyxin E is significantly reduced when treating life-threatening bacterial infections due to plasmid-mediated polymyxin E resistance. The synergistic effect of applying a polymyxin E adjuvant is a promising strategy for overcoming the growing threat of antibiotic-resistant pathogens. PURPOSE: To evaluate the synergistic effect of fisetin and polymyxin E on S. typhimurium infections in vivo and further elucidate the underlying mechanism of this effect. METHODS: The effect of combining fisetin and polymyxin E to treat mobilized colistin resistance-1-positive (MCR-1-positive) gram-negative bacteria in vitro was examined using various methods, such as checkerboard assays, growth curves and time‒kill curves. To elucidate the mechanism by which fisetin affects MCR-1, we employed ultraviolet (UV) absorption spectroscopy, thin layer chromatography (TLC), and western blot analysis to investigate its effect at the protein level. Subsequently, molecular dynamics simulations (MDS) and metabolomics analysis were utilized to determine the site of interaction between fisetin and MCR-1 as well as the potential pathways and mechanisms involved. A new nanoemulsion of fisetin was produced using high-pressure homogenization, and its stability was tested. Finally, two animal models of S. typhimurium HYM2 infection were established to evaluate the synergistic effect of polymyxin E and fisetin in vivo. RESULTS: Our study revealed that fisetin exhibited a synergistic effect when combined with polymyxin E against MCR-1-positive S. typhimurium. The TLC results demonstrated that fisetin could inhibit the phosphoethanolamine (PEA) transfer of the MCR-1 protein, thereby restoring the activity of polymyxin E in strains against MCR-1. The MDS analysis indicated robust and immediate binding between fisetin and the MCR-1 protein, with both hydrophobic and polar effects playing significant roles in determining the binding energy of the former. Metabolomic studies demonstrated that the addition of fisetin significantly modulated bacterial metabolites. Moreover, it effectively inhibited the activity of ABC transporters in bacteria, thereby mitigating bacterial drug resistance and enhancing the therapeutic efficacy of polymyxin E. Furthermore, in mouse and chick models of infection, intragastric administration of the fisetin nanoemulsion together with polymyxin E resulted in significant therapeutic benefits, including increased survival rates, reduced bacterial colonization, and decreased levels of inflammatory factors. CONCLUSION: Fisetin, an MCR-1 inhibitor and a promising synergistic partner of polymyxin E, has significant potential for clinical application in the treatment of S. typhimurium infections, particularly those resulting extensively from drug-resistant MCR-1-positive strains.


Assuntos
Antibacterianos , Colistina , Flavonoides , Flavonóis , Salmonella typhimurium , Flavonóis/farmacologia , Animais , Colistina/farmacologia , Antibacterianos/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Flavonoides/farmacologia , Emulsões , Sinergismo Farmacológico , Camundongos , Testes de Sensibilidade Microbiana , Feminino , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Simulação de Dinâmica Molecular , Camundongos Endogâmicos BALB C
5.
Biochem Pharmacol ; 227: 116384, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38909787

RESUMO

Multidrug resistance (MDR) Klebsiella pneumoniae (K. pneumoniae) is a major emerging threat to human health, and leads to very high mortality rate. The effectiveness of colistin, the last resort against MDR Gram-negative bacteria, is significantly compromised due to the widespread presence of plasmid- or chromosome-mediated resistance genes. In this study, o-cymen-5-ol has been found to greatly restore colistin sensitivity in MDR K. pneumoniae. Importantly, this compound does not impact bacterial viability, induce resistance, or cause any noticeable cell toxicity. Various routes disclosed the potential mechanism of o-cymen-5-ol potentiating colistin activity against MDR K. pneumoniae. These include inhibiting the activity of plasmid-mediated mobile colistin resistance gene (mcr-1), accelerating lipopolysaccharide (LPS) - mediated membrane damage, and promoting the ATP-binding cassette (ABC) transporter pathway. To enhance the administration and bioavailability of o-cymen-5-ol, a nanoemulsion has been designed, which significantly improves the loading efficiency and solubility of o-cymen-5-ol, resulting in antimicrobial potentiation of colistin against K. pneumoniae infection. This study has revealed a new understanding of the o-cymen-5-ol nanoemulsion as a means to enhance the effectiveness of colistin against resistant factors. The finding also suggests that o-cymen-5-ol nanoemulsion could be a promising approach in the development of potential treatments for multidrug-resistant Gram-negative bacterial infections.


Assuntos
Antibacterianos , Colistina , Farmacorresistência Bacteriana Múltipla , Emulsões , Infecções por Klebsiella , Klebsiella pneumoniae , Klebsiella pneumoniae/efeitos dos fármacos , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/fisiologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Antibacterianos/farmacologia , Animais , Camundongos , Nanopartículas/química , Testes de Sensibilidade Microbiana , Humanos
6.
J Agric Food Chem ; 70(51): 16201-16217, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36530172

RESUMO

The efficacy of colistin, the last option against multidrug-resistant (MDR) Gram-negative bacteria, is severely threatened by the prevalence of plasmid- or chromosome-mediated colistin resistance genes. Herein, naringenin has dramatically restored colistin sensitivity against colistin-resistant Klebsiella pneumoniae infection without affecting bacterial viability, inducing resistance and causing obvious cell toxicity. Mechanism analysis reveals that naringenin potentiates colistin activity by multiple strategies including inhibition of mobilized colistin resistance gene activity, repression of two-component system regulation, and acceleration of reactive oxygen species-mediated oxidative damage. A lung-targeted delivery system of naringenin microspheres has been designed to facilitate naringenin bioavailability, accompanied by an effective potentiation of colistin for Klebsiella pneumoniae infection. Consequently, a new recognition of naringenin microspheres has been elucidated to restore colistin efficacy against colistin-resistant Gram-negative pathogens, which may be an effective strategy of developing potential candidates for MDR Gram-negative bacteria infection.


Assuntos
Antibacterianos , Colistina , Colistina/farmacologia , Antibacterianos/farmacologia , Klebsiella pneumoniae/genética , Microesferas , Testes de Sensibilidade Microbiana
7.
Chin Med ; 16(1): 106, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663394

RESUMO

BACKGROUND: The wide spread of plasmid-mediated colistin resistance by mobile colistin resistance (MCR) in Enterobacteriaceae severely limits the clinical application of colistin as a last-line drug against bacterial infection. The identification of colistin potentiator from natural plants or their compound preparation as antibiotic adjuncts is a new promising strategy to meet this challenge. METHODS: Herein, the synergistic activity, as well as the potential mechanism, of Pingwei pill plus antibiotics against MCR-positive Gram-negative pathogens was examined using checkerboard assay, time-killing curves, combined disk test, western blot assay, and microscope analysis. Additionally, the Salmonella sp. HYM2 infection models of mouse and chick were employed to examine the in vivo efficacy of Pingwei pill in combination with colistin against bacteria infection. Finally, network pharmacology and molecular docking assay were used to predicate other actions of Pingwei pill for Salmonella infection. RESULTS: Our results revealed that Pingwei Pill synergistically potentiated the antibacterial activity of colistin against MCR-1-positive bacteria by accelerating the damage and permeability of the bacterial outer membrane with an FIC (Fractional Inhibitory Concentration) index less than 0.5. The treatment of Pingwei Pill neither inhibited bacterial growth nor affected MCR production. Notably, Pingwei Pill in combination with colistin significantly prolonged the median survival in mouse and chick models of infection using the Salmonella sp. strain HYM2, decreased bacteria burden and organ index of infected animal, alleviated pathological damage of cecum, which suggest that Pingwei Pill recovered the therapeutic performance of colistin for MCR-1- positive Salmonella infection in mice and the naturally infected host chick. Pharmacological network topological analysis, molecular docking, bacterial adhesion, and invasion pathway verification assays were performed to identify the other molecular mechanisms of Pingwei Pill as a colistin potentiator against Gram-negative bacteria infection. CONCLUSION: Taken together, NMPA (National Medical Products Administration)-approved Pingwei Pill is a promising adjuvant with colistin for MCR-positive bacterial infection with a shortened R&D (research and development) cycle and affordable R&D cost and risk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA