Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biophotonics ; 17(10): e202400186, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39218434

RESUMO

Multiphoton fluorescence microscopy excited with femtosecond pulses at high repetition rates, particularly in the range of 100's MHz to GHz, offers an alternative solution to suppress photoinduced damage to biological samples, for example, photobleaching. Here, we demonstrate the use of a U-Net-based deep-learning algorithm for suppressing the inherent shot noise of the two-photon fluorescence images excited with GHz femtosecond pulses. With the trained denoising neural network, the image quality of the representative two-photon fluorescence images of the biological samples is shown to be significantly improved. Moreover, for input raw images with even SNR reduced to -4.76 dB, the trained denoising network can recover the main image structure from noise floor with acceptable fidelity and spatial resolution. It is anticipated that the combination of GHz femtosecond pulses and deep-learning denoising algorithm can be a promising solution for eliminating the trade-off between photoinduced damage and image quality in nonlinear optical imaging platforms.


Assuntos
Aprendizado Profundo , Dinâmica não Linear , Imagem Óptica , Razão Sinal-Ruído , Fatores de Tempo , Processamento de Imagem Assistida por Computador/métodos , Humanos , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA