Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Am J Physiol Cell Physiol ; 327(2): C221-C236, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38826135

RESUMO

Extranuclear localization of long noncoding RNAs (lncRNAs) is poorly understood. Based on machine learning evaluations, we propose a lncRNA-mitochondrial interaction pathway where polynucleotide phosphorylase (PNPase), through domains that provide specificity for primary sequence and secondary structure, binds nuclear-encoded lncRNAs to facilitate mitochondrial import. Using FVB/NJ mouse and human cardiac tissues, RNA from isolated subcellular compartments (cytoplasmic and mitochondrial) and cross-linked immunoprecipitate (CLIP) with PNPase within the mitochondrion were sequenced on the Illumina HiSeq and MiSeq, respectively. lncRNA sequence and structure were evaluated through supervised [classification and regression trees (CART) and support vector machines (SVM)] machine learning algorithms. In HL-1 cells, quantitative PCR of PNPase CLIP knockout mutants (KH and S1) was performed. In vitro fluorescence assays assessed PNPase RNA binding capacity and verified with PNPase CLIP. One hundred twelve (mouse) and 1,548 (human) lncRNAs were identified in the mitochondrion with Malat1 being the most abundant. Most noncoding RNAs binding PNPase were lncRNAs, including Malat1. lncRNA fragments bound to PNPase compared against randomly generated sequences of similar length showed stratification with SVM and CART algorithms. The lncRNAs bound to PNPase were used to create a criterion for binding, with experimental validation revealing increased binding affinity of RNA designed to bind PNPase compared to control RNA. The binding of lncRNAs to PNPase was decreased through the knockout of RNA binding domains KH and S1. In conclusion, sequence and secondary structural features identified by machine learning enhance the likelihood of nuclear-encoded lncRNAs binding to PNPase and undergoing import into the mitochondrion.NEW & NOTEWORTHY Long noncoding RNAs (lncRNAs) are relatively novel RNAs with increasingly prominent roles in regulating genetic expression, mainly in the nucleus but more recently in regions such as the mitochondrion. This study explores how lncRNAs interact with polynucleotide phosphorylase (PNPase), a protein that regulates RNA import into the mitochondrion. Machine learning identified several RNA structural features that improved lncRNA binding to PNPase, which may be useful in targeting RNA therapeutics to the mitochondrion.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Humanos , Camundongos , Polirribonucleotídeo Nucleotidiltransferase/genética , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Mitocôndrias/genética , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Ligação Proteica
2.
Am J Physiol Cell Physiol ; 322(3): C482-C495, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108116

RESUMO

Diabetes mellitus has been linked to an increase in mitochondrial microRNA-378a (miR-378a) content. Enhanced miR-378a content has been associated with a reduction in mitochondrial genome-encoded mt-ATP6 abundance, supporting the hypothesis that miR-378a inhibition may be a therapeutic option for maintaining ATP synthase functionality during diabetes mellitus. Evidence also suggests that long noncoding RNAs (lncRNAs), including lncRNA potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (Kcnq1ot1), participate in regulatory axes with microRNAs (miRs). Prediction analyses indicate that Kcnq1ot1 has the potential to bind miR-378a. This study aimed to determine if loss of miR-378a in a genetic mouse model could ameliorate cardiac dysfunction in type 2 diabetes mellitus (T2DM) and to ascertain whether Kcnq1ot1 interacts with miR-378a to impact ATP synthase functionality by preserving mt-ATP6 levels. MiR-378a was significantly higher in patients with T2DM and 25-wk-old Db/Db mouse mitochondria, whereas mt-ATP6 and Kcnq1ot1 levels were significantly reduced when compared with controls. Twenty-five-week-old miR-378a knockout Db/Db mice displayed preserved mt-ATP6 and ATP synthase protein content, ATP synthase activity, and preserved cardiac function, implicating miR-378a as a potential therapeutic target in T2DM. Assessments following overexpression of the 500-bp Kcnq1ot1 fragment in established mouse cardiomyocyte cell line (HL-1) cardiomyocytes overexpressing miR-378a revealed that Kcnq1ot1 may bind and significantly reduce miR-378a levels, and rescue mt-ATP6 and ATP synthase protein content. Together, these data suggest that Kcnq1ot1 and miR-378a may act as constituents in an axis that regulates mt-ATP6 content, and that manipulation of this axis may provide benefit to ATP synthase functionality in type 2 diabetic heart.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , RNA Longo não Codificante , Trifosfato de Adenosina , Animais , Diabetes Mellitus Tipo 2/genética , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética
3.
J Mol Cell Cardiol ; 119: 104-115, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29733819

RESUMO

>99% of the mitochondrial proteome is nuclear-encoded. The mitochondrion relies on a coordinated multi-complex process for nuclear genome-encoded mitochondrial protein import. Mitochondrial heat shock protein 70 (mtHsp70) is a key component of this process and a central constituent of the protein import motor. Type 2 diabetes mellitus (T2DM) disrupts mitochondrial proteomic signature which is associated with decreased protein import efficiency. The goal of this study was to manipulate the mitochondrial protein import process through targeted restoration of mtHsp70, in an effort to restore proteomic signature and mitochondrial function in the T2DM heart. A novel line of cardiac-specific mtHsp70 transgenic mice on the db/db background were generated and cardiac mitochondrial subpopulations were isolated with proteomic evaluation and mitochondrial function assessed. MicroRNA and epigenetic regulation of the mtHsp70 gene during T2DM were also evaluated. MtHsp70 overexpression restored cardiac function and nuclear-encoded mitochondrial protein import, contributing to a beneficial impact on proteome signature and enhanced mitochondrial function during T2DM. Further, transcriptional repression at the mtHsp70 genomic locus through increased localization of H3K27me3 during T2DM insult was observed. Our results suggest that restoration of a key protein import constituent, mtHsp70, provides therapeutic benefit through attenuation of mitochondrial and contractile dysfunction in T2DM.


Assuntos
Diabetes Mellitus Tipo 2/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas Mitocondriais/genética , Miocárdio/metabolismo , Animais , Diabetes Mellitus Tipo 2/patologia , Epigênese Genética , Humanos , Peroxidação de Lipídeos/genética , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/genética , Miocárdio/patologia , Estresse Oxidativo/genética , Transporte Proteico/genética , Proteoma/genética
4.
Am J Physiol Heart Circ Physiol ; 314(2): H293-H310, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28986361

RESUMO

Type 2 diabetes mellitus is a major risk factor for cardiovascular disease and mortality. Uncontrolled type 2 diabetes mellitus results in a systemic milieu of increased circulating glucose and fatty acids. The development of insulin resistance in cardiac tissue decreases cellular glucose import and enhances mitochondrial fatty acid uptake. While triacylglycerol and cytotoxic lipid species begin to accumulate in the cardiomyocyte, the energy substrate utilization ratio of free fatty acids to glucose changes to almost entirely free fatty acids. Accumulating evidence suggests a role of miRNA in mediating this metabolic transition. Energy substrate metabolism, apoptosis, and the production and response to excess reactive oxygen species are regulated by miRNA expression. The current momentum for understanding the dynamics of miRNA expression is limited by a lack of understanding of how miRNA expression is controlled. While miRNAs are important regulators in both normal and pathological states, an additional layer of complexity is added when regulation of miRNA regulators is considered. miRNA expression is known to be regulated through a number of mechanisms, which include, but are not limited to, epigenetics, exosomal transport, processing, and posttranscriptional sequestration. The purpose of this review is to outline how mitochondrial processes are regulated by miRNAs in the diabetic heart. Furthermore, we will highlight the regulatory mechanisms, such as epigenetics, exosomal transport, miRNA processing, and posttranslational sequestration, that participate as regulators of miRNA expression. Additionally, current and future treatment strategies targeting dysfunctional mitochondrial processes in the diseased myocardium, as well as emerging miRNA-based therapies, will be summarized.


Assuntos
Diabetes Mellitus Tipo 2/genética , Cardiomiopatias Diabéticas/genética , Metabolismo Energético/genética , MicroRNAs/genética , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Animais , Apoptose/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Epigênese Genética , Regulação da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Mitocôndrias Cardíacas/patologia , Miocárdio/patologia , Estresse Oxidativo/genética , Processamento Pós-Transcricional do RNA
5.
J Mol Cell Cardiol ; 110: 15-25, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28709769

RESUMO

Cardiovascular disease is the primary cause of mortality for individuals with type 2 diabetes mellitus. During the diabetic condition, cardiovascular dysfunction can be partially attributed to molecular changes in the tissue, including alterations in microRNA (miRNA) interactions. MiRNAs have been reported in the mitochondrion and their presence may influence cellular bioenergetics, creating decrements in functional capacity. In this study, we examined the roles of Argonaute 2 (Ago2), a protein associated with cytosolic and mitochondrial miRNAs, and Polynucleotide Phosphorylase (PNPase), a protein found in the inner membrane space of the mitochondrion, to determine their role in mitochondrial miRNA import. In cardiac tissue from human and mouse models of type 2 diabetes mellitus, Ago2 protein levels were unchanged while PNPase protein expression levels were increased; also, there was an increase in the association between both proteins in the diabetic state. MiRNA-378 was found to be significantly increased in db/db mice, leading to decrements in ATP6 levels and ATP synthase activity, which was also exhibited when overexpressing PNPase in HL-1 cardiomyocytes and in HL-1 cells with stable miRNA-378 overexpression (HL-1-378). To assess potential therapeutic interventions, flow cytometry evaluated the capacity for targeting miRNA-378 species in mitochondria through antimiR treatment, revealing miRNA-378 level-dependent inhibition. Our study establishes PNPase as a contributor to mitochondrial miRNA import through the transport of miRNA-378, which may regulate bioenergetics during type 2 diabetes mellitus. Further, our data provide evidence that manipulation of PNPase levels may enhance the delivery of antimiR therapeutics to mitochondria in physiological and pathological conditions.


Assuntos
MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Transporte de RNA , Animais , Antagomirs , Proteínas Argonautas/metabolismo , Linhagem Celular , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Metabolismo Energético , Fluorescência , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Ligação Proteica
6.
Am J Physiol Heart Circ Physiol ; 312(3): H446-H458, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011589

RESUMO

Nanomaterial production is expanding as new industrial and consumer applications are introduced. Nevertheless, the impacts of exposure to these compounds are not fully realized. The present study was designed to determine whether gestational nano-sized titanium dioxide exposure impacts cardiac and metabolic function of developing progeny. Pregnant Sprague-Dawley rats were exposed to nano-aerosols (~10 mg/m3, 130- to 150-nm count median aerodynamic diameter) for 7-8 nonconsecutive days, beginning at gestational day 5-6 Physiological and bioenergetic effects on heart function and cardiomyocytes across three time points, fetal (gestational day 20), neonatal (4-10 days), and young adult (6-12 wk), were evaluated. Functional analysis utilizing echocardiography, speckle-tracking based strain, and cardiomyocyte contractility, coupled with mitochondrial energetics, revealed effects of nano-exposure. Maternal exposed progeny demonstrated a decrease in E- and A-wave velocities, with a 15% higher E-to-A ratio than controls. Myocytes isolated from exposed animals exhibited ~30% decrease in total contractility, departure velocity, and area of contraction. Bioenergetic analysis revealed a significant increase in proton leak across all ages, accompanied by decreases in metabolic function, including basal respiration, maximal respiration, and spare capacity. Finally, electron transport chain complex I and IV activities were negatively impacted in the exposed group, which may be linked to a metabolic shift. Molecular data suggest that an increase in fatty acid metabolism, uncoupling, and cellular stress proteins may be associated with functional deficits of the heart. In conclusion, gestational nano-exposure significantly impairs the functional capabilities of the heart through cardiomyocyte impairment, which is associated with mitochondrial dysfunction.NEW & NOTEWORTHY Cardiac function is evaluated, for the first time, in progeny following maternal nanomaterial inhalation. The findings indicate that exposure to nano-sized titanium dioxide (nano-TiO2) during gestation negatively impacts cardiac function and mitochondrial respiration and bioenergetics. We conclude that maternal nano-TiO2 inhalation contributes to adverse cardiovascular health effects, lasting into adulthood.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Coração/diagnóstico por imagem , Miocárdio/patologia , Nanoestruturas/toxicidade , Efeitos Tardios da Exposição Pré-Natal/patologia , Envelhecimento , Animais , Ecocardiografia , Complexo I de Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/efeitos dos fármacos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Cardiopatias/induzido quimicamente , Cardiopatias/diagnóstico por imagem , Cardiopatias/patologia , Testes de Função Cardíaca , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Gravidez , Ratos , Ratos Sprague-Dawley , Titânio/toxicidade
7.
Mol Genet Metab ; 120(4): 350-362, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28189602

RESUMO

Coenzyme A (CoA) is a cofactor that is central to energy metabolism and CoA synthesis is controlled by the enzyme pantothenate kinase (PanK). A transgenic mouse strain expressing human PANK2 was derived to determine the physiological impact of PANK overexpression and elevated CoA levels. The Tg(PANK2) mice expressed high levels of the transgene in skeletal muscle and heart; however, CoA was substantially elevated only in skeletal muscle, possibly associated with the comparatively low endogenous levels of acetyl-CoA, a potent feedback inhibitor of PANK2. Tg(PANK2) mice were smaller, had less skeletal muscle mass and displayed significantly impaired exercise tolerance and grip strength. Skeletal myofibers were characterized by centralized nuclei and aberrant mitochondria. Both the content of fully assembled complex I of the electron transport chain and ATP levels were reduced, while markers of oxidative stress were elevated in Tg(PANK2) skeletal muscle. These abnormalities were not detected in the Tg(PANK2) heart muscle, with the exception of spotty loss of cristae organization in the mitochondria. The data demonstrate that excessively high CoA may be detrimental to skeletal muscle function.


Assuntos
Coenzima A/metabolismo , Força da Mão/fisiologia , Mitocôndrias/metabolismo , Músculo Esquelético/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Animais , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Regulação para Cima
8.
J Mol Cell Cardiol ; 90: 74-83, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26654913

RESUMO

Enhanced sensitivity in echocardiographic analyses may allow for early detection of changes in cardiac function beyond the detection limits of conventional echocardiographic analyses, particularly in a small animal model. The goal of this study was to compare conventional echocardiographic measurements and speckle-tracking based strain imaging analyses in a small animal model of type 1 diabetes mellitus. Conventional analyses revealed differences in ejection fraction, fractional shortening, cardiac output, and stroke volume in diabetic animals relative to controls at 6-weeks post-diabetic onset. In contrast, when assessing short- and long-axis speckle-tracking based strain analyses, diabetic mice showed changes in average systolic radial strain, radial strain rate, radial displacement, and radial velocity, as well as decreased circumferential and longitudinal strain rate, as early as 1-week post-diabetic onset and persisting throughout the diabetic study. Further, we performed regional analyses for the LV and found that the free wall region was affected in both the short- and long-axis when assessing radial dimension parameters. These changes began 1-week post-diabetic onset and remained throughout the progression of the disease. These findings demonstrate the use of speckle-tracking based strain as an approach to elucidate cardiac dysfunction from a global perspective, identifying left ventricular cardiac regions affected during the progression of type 1 diabetes mellitus earlier than contractile changes detected by conventional echocardiographic measurements.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Cardiomiopatias Diabéticas/diagnóstico , Ecocardiografia/métodos , Ventrículos do Coração/fisiopatologia , Disfunção Ventricular Esquerda/diagnóstico , Animais , Débito Cardíaco , Cardiomiopatias Diabéticas/fisiopatologia , Diástole , Masculino , Camundongos , Volume Sistólico , Sístole , Disfunção Ventricular Esquerda/fisiopatologia
9.
J Mol Cell Cardiol ; 79: 212-23, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25463274

RESUMO

Mitofilin, also known as heart muscle protein, is an inner mitochondrial membrane structural protein that plays a central role in maintaining cristae morphology and structure. It is a critical component of the mitochondrial contact site and cristae organizing system (MICOS) complex which is important for mitochondrial architecture and cristae morphology. Our laboratory has previously reported alterations in mitochondrial morphology and proteomic make-up during type 1 diabetes mellitus, with mitofilin being significantly down-regulated in interfibrillar mitochondria (IFM). The goal of this study was to investigate whether overexpression of mitofilin can limit mitochondrial disruption associated with the diabetic heart through restoration of mitochondrial morphology and function. A transgenic mouse line overexpressing mitofilin was generated and mice injected intraperitoneally with streptozotocin using a multi low-dose approach. Five weeks following diabetes mellitus onset, cardiac contractile function was assessed. Restoration of ejection fraction and fractional shortening was observed in mitofilin diabetic mice as compared to wild-type controls (P<0.05 for both). Decrements observed in electron transport chain (ETC) complex I, III, IV and V activities, state 3 respiration, lipid peroxidation as well as mitochondria membrane potential in type 1 diabetic IFM were restored in mitofilin diabetic mice (P<0.05 for all). Qualitative analyses of electron micrographs revealed restoration of mitochondrial cristae structure in mitofilin diabetic mice as compared to wild-type controls. Furthermore, measurement of mitochondrial internal complexity using flow cytometry displayed significant reduction in internal complexity in diabetic IFM which was restored in mitofilin diabetic IFM (P<0.05). Taken together these results suggest that transgenic overexpression of mitofilin preserves mitochondrial structure, leading to restoration of mitochondrial function and attenuation of cardiac contractile dysfunction in the diabetic heart.


Assuntos
Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Coração/fisiopatologia , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , Animais , Western Blotting , Peso Corporal , Diabetes Mellitus Experimental/metabolismo , Transporte de Elétrons , Humanos , Peroxidação de Lipídeos , Masculino , Potencial da Membrana Mitocondrial , Camundongos Transgênicos , Mitocôndrias Cardíacas/ultraestrutura , Dinâmica Mitocondrial , Contração Miocárdica , Eletroforese em Gel de Poliacrilamida Nativa , Tamanho do Órgão , Estresse Oxidativo
10.
Am J Physiol Heart Circ Physiol ; 309(12): H2017-30, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26497962

RESUMO

Throughout the United States, air pollution correlates with adverse health outcomes, and cardiovascular disease incidence is commonly increased following environmental exposure. In areas surrounding active mountaintop removal mines (MTM), a further increase in cardiovascular morbidity is observed and may be attributed in part to particulate matter (PM) released from the mine. The mitochondrion has been shown to be central in the etiology of many cardiovascular diseases, yet its roles in PM-related cardiovascular effects are not realized. In this study, we sought to elucidate the cardiac processes that are disrupted following exposure to mountaintop removal mining particulate matter (PM MTM). To address this question, we exposed male Sprague-Dawley rats to PM MTM, collected within one mile of an active MTM site, using intratracheal instillation. Twenty-four hours following exposure, we evaluated cardiac function, apoptotic indices, and mitochondrial function. PM MTM exposure elicited a significant decrease in ejection fraction and fractional shortening compared with controls. Investigation into the cellular impacts of PM MTM exposure identified a significant increase in mitochondrial-induced apoptotic signaling, as reflected by an increase in TUNEL-positive nuclei and increased caspase-3 and -9 activities. Finally, a significant increase in mitochondrial transition pore opening leading to decreased mitochondrial function was identified following exposure. In conclusion, our data suggest that pulmonary exposure to PM MTM increases cardiac mitochondrial-associated apoptotic signaling and decreases mitochondrial function concomitant with decreased cardiac function. These results suggest that increased cardiovascular disease incidence in populations surrounding MTM mines may be associated with increased cardiac cell apoptotic signaling and decreased mitochondrial function.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Poluição do Ar/efeitos adversos , Cardiopatias/induzido quimicamente , Doenças Mitocondriais/induzido quimicamente , Material Particulado/toxicidade , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Ecocardiografia , Exposição Ambiental , Monitoramento Ambiental , Cardiopatias/diagnóstico por imagem , Marcação In Situ das Extremidades Cortadas , Injeções Espinhais , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Doenças Mitocondriais/diagnóstico por imagem , Contração Miocárdica/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA