Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(42): E6496-E6505, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27688759

RESUMO

Oligodendrocytes have recently been implicated in the pathophysiology of amyotrophic lateral sclerosis (ALS). Here we show that, in vitro, mutant superoxide dismutase 1 (SOD1) mouse oligodendrocytes induce WT motor neuron (MN) hyperexcitability and death. Moreover, we efficiently derived human oligodendrocytes from a large number of controls and patients with sporadic and familial ALS, using two different reprogramming methods. All ALS oligodendrocyte lines induced MN death through conditioned medium (CM) and in coculture. CM-mediated MN death was associated with decreased lactate production and release, whereas toxicity in coculture was lactate-independent, demonstrating that MN survival is mediated not only by soluble factors. Remarkably, human SOD1 shRNA treatment resulted in MN rescue in both mouse and human cultures when knockdown was achieved in progenitor cells, whereas it was ineffective in differentiated oligodendrocytes. In fact, early SOD1 knockdown rescued lactate impairment and cell toxicity in all lines tested, with the exclusion of samples carrying chromosome 9 ORF 72 (C9orf72) repeat expansions. These did not respond to SOD1 knockdown nor did they show lactate release impairment. Our data indicate that SOD1 is directly or indirectly involved in ALS oligodendrocyte pathology and suggest that in this cell type, some damage might be irreversible. In addition, we demonstrate that patients with C9ORF72 represent an independent patient group that might not respond to the same treatment.


Assuntos
Esclerose Lateral Amiotrófica/genética , Neurônios Motores/metabolismo , Oligodendroglia/metabolismo , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Apoptose , Biomarcadores , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Comunicação Celular , Morte Celular , Diferenciação Celular , Sobrevivência Celular , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Ácido Láctico/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Oligodendroglia/citologia , Superóxido Dismutase-1/metabolismo
2.
Proc Natl Acad Sci U S A ; 111(28): 10335-40, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24982149

RESUMO

Most central neurons in the mammalian brain possess an appendage called a primary cilium that projects from the soma into the extracellular space. The importance of these organelles is highlighted by the fact that primary cilia dysfunction is associated with numerous neuropathologies, including hyperphagia-induced obesity, hypogonadism, and learning and memory deficits. Neuronal cilia are enriched for signaling molecules, including certain G protein-coupled receptors (GPCRs), suggesting that neuronal cilia sense and respond to neuromodulators in the extracellular space. However, the impact of cilia on signaling to central neurons has never been demonstrated. Here, we show that the kisspeptin receptor (Kiss1r), a GPCR that is activated by kisspeptin to regulate the onset of puberty and adult reproductive function, is enriched in cilia projecting from mouse gonadotropin-releasing hormone (GnRH) neurons. Interestingly, GnRH neurons in adult animals are multiciliated and the percentage of GnRH neurons possessing multiple Kiss1r-positive cilia increases during postnatal development in a progression that correlates with sexual maturation. Remarkably, disruption of cilia selectively on GnRH neurons leads to a significant reduction in kisspeptin-mediated GnRH neuronal activity. To our knowledge, this result is the first demonstration of cilia disruption affecting central neuronal activity and highlights the importance of cilia for proper GPCR signaling.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Reprodução/fisiologia , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Cílios/genética , Cílios/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/genética , Kisspeptinas/genética , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Receptores Acoplados a Proteínas G/genética , Receptores de Kisspeptina-1 , Maturidade Sexual/fisiologia
3.
J Neurosci ; 31(26): 9723-34, 2011 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-21715637

RESUMO

Acid-sensing ion channel (ASIC) subunits associate to form homomeric or heteromeric proton-gated ion channels in neurons throughout the nervous system. The ASIC1a subunit plays an important role in establishing the kinetics of proton-gated currents in the CNS, and activation of ASIC1a homomeric channels induces neuronal death after local acidosis that accompanies cerebral ischemia. The ASIC2b subunit is expressed in the brain in a pattern that overlaps ASIC1a, yet the contribution of ASIC2b has remained elusive. We find that coexpression of ASIC2b with ASIC1a in Xenopus oocytes results in novel proton-gated currents with properties distinct from ASIC1a homomeric channels. In particular, ASIC2b/1a heteromeric channels are inhibited by the nonselective potassium channel blockers tetraethylammonium and barium. In addition, steady-state desensitization is induced at more basic pH values, and Big Dynorphin sensitivity is enhanced in these unique heteromeric channels. Cultured hippocampal neurons show proton-gated currents consistent with ASIC2b contribution, and these currents are lacking in neurons from mice with an ACCN1 (ASIC2) gene disruption. Finally, we find that these ASIC2b/1a heteromeric channels contribute to acidosis-induced neuronal death. Together, our results show that ASIC2b confers unique properties to heteromeric channels in central neurons. Furthermore, these data indicate that ASIC2, like ASIC1, plays a role in acidosis-induced neuronal death and implicate the ASIC2b/1a subtype as a novel pharmacological target to prevent neuronal injury after stroke.


Assuntos
Acidose/metabolismo , Morte Celular/fisiologia , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Acidose/fisiopatologia , Análise de Variância , Animais , Eletrofisiologia , Hipocampo/fisiopatologia , Camundongos , Xenopus
4.
Am J Physiol Cell Physiol ; 303(7): C699-710, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22843794

RESUMO

The acid-sensing ion channels (ASICs) are a family of proton-sensing channels expressed throughout the nervous system. Their activity is linked to a variety of complex behaviors including fear, anxiety, pain, depression, learning, and memory. ASICs have also been implicated in neuronal degeneration accompanying ischemia and multiple sclerosis. As a whole, ASICs represent novel therapeutic targets for several clinically important disorders. An understanding of the correlation between ASIC structure and function will help to elucidate their mechanism of action and identify potential therapeutics that specifically target these ion channels. Despite the seemingly simple nature of proton binding, multiple studies have shown that proton-dependent gating of ASICs is quite complex, leading to activation and desensitization through distinct structural components. This review will focus on the structural aspects of ASIC gating in response to both protons and the newly discovered activators GMQ and MitTx. ASIC modulatory compounds and their action on proton-dependent gating will also be discussed. This review is dedicated to the memory of Dale Benos, who made a substantial contribution to our understanding of ASIC activity.


Assuntos
Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/fisiologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Humanos , Poro Nuclear/química , Poro Nuclear/metabolismo , Poro Nuclear/fisiologia , Relação Estrutura-Atividade
5.
J Biol Chem ; 285(53): 41852-62, 2010 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-21036899

RESUMO

The acid-sensing ion channels (ASICs) are proton-gated cation channels activated when extracellular pH declines. In rodents, the Accn2 gene encodes transcript variants ASIC1a and ASIC1b, which differ in the first third of the protein and display distinct channel properties. In humans, ACCN2 transcript variant 2 (hVariant 2) is homologous to mouse ASIC1a. In this article, we study two other human ACCN2 transcript variants. Human ACCN2 transcript variant 1 (hVariant 1) is not present in rodents and contains an additional 46 amino acids directly preceding the proposed channel gate. We report that hVariant 1 does not produce proton-gated currents under normal conditions when expressed in heterologous systems. We also describe a third human ACCN2 transcript variant (hVariant 3) that is similar to rodent ASIC1b. hVariant 3 is more abundantly expressed in dorsal root ganglion compared with brain and shows basic channel properties analogous to rodent ASIC1b. Yet, proton-gated currents from hVariant 3 are significantly more permeable to calcium than either hVariant 2 or rodent ASIC1b, which shows negligible calcium permeability. hVariant 3 also displays a small acid-dependent sustained current. Such a sustained current is particularly intriguing as ASIC1b is thought to play a role in sensory transduction in rodents. In human DRG neurons, hVariant 3 could induce sustained calcium influx in response to acidic pH and make a major contribution to acid-dependent sensations, such as pain.


Assuntos
Cálcio/química , Proteínas do Tecido Nervoso/química , Canais de Sódio/química , Canais Iônicos Sensíveis a Ácido , Sequência de Aminoácidos , Animais , Células CHO , Cálcio/metabolismo , Cricetinae , Cricetulus , Humanos , Concentração de Íons de Hidrogênio , Íons/química , Camundongos , Dados de Sequência Molecular , Neurônios/metabolismo , Oócitos/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Xenopus laevis/metabolismo
6.
J Neurosci ; 29(45): 14371-80, 2009 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-19906984

RESUMO

Acid-sensing ion channel 1a (ASIC1a) promotes neuronal damage during pathological acidosis. ASIC1a undergoes a process called steady-state desensitization in which incremental pH reductions desensitize the channel and prevent activation when the threshold for acid-dependent activation is reached. We find that dynorphin A and big dynorphin limit steady-state desensitization of ASIC1a and acid-activated currents in cortical neurons. Dynorphin potentiation of ASIC1a activity is independent of opioid or bradykinin receptor activation but is prevented in the presence of PcTx1, a peptide which is known to bind the extracellular domain of ASIC1a. This suggests that dynorphins interact directly with ASIC1a to enhance channel activity. Inducing steady-state desensitization prevents ASIC1a-mediated cell death during prolonged acidosis. This neuroprotection is abolished in the presence of dynorphins. Together, these results define ASIC1a as a new nonopioid target for dynorphin action and suggest that dynorphins enhance neuronal damage following ischemia by preventing steady-state desensitization of ASIC1a.


Assuntos
Acidose/fisiopatologia , Dinorfinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Análise de Variância , Animais , Morte Celular/fisiologia , Células Cultivadas , Hipocampo/fisiopatologia , Concentração de Íons de Hidrogênio , Camundongos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Peptídeos , Prótons , Receptores da Bradicinina/metabolismo , Receptores Opioides/metabolismo , Canais de Sódio/genética , Venenos de Aranha/farmacologia , Xenopus laevis
7.
J Biol Chem ; 283(4): 1818-30, 2008 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-17984098

RESUMO

The acid-sensing ion channels (ASICs) are proton-gated, voltage-insensitive cation channels expressed throughout the nervous system. ASIC1a plays a role in learning, pain, and fear-related behaviors. In addition, activation of ASIC1a during prolonged acidosis following cerebral ischemia induces neuronal death. ASICs undergo steady-state desensitization, a characteristic that limits ASIC1a activity and may play a prominent role in the prevention of ASIC1a-evoked neuronal death. In this study, we found exogenous and endogenous arginine-phenylalanine-amide (RF-amide)-related peptides decreased the pH sensitivity of ASIC1a steady-state desensitization. During conditions that normally induced steady-state desensitization, these peptides profoundly enhanced ASIC1a activity. We also determined that human ASIC1a required more acidic pH to undergo steady-state desensitization compared with mouse ASIC1a. Surprisingly, steady-state desensitization of human ASIC1a was also affected by a greater number of peptides compared with mouse ASIC1a. Mutation of five amino acids in a region of the extracellular domain changed the characteristics of human ASIC1a to those of mouse ASIC1a, suggesting that this region plays a pivotal role in neuropeptide and pH sensitivity of steady-state desensitization. Overall, these experiments lend vital insight into steady-state desensitization of ASIC1a and expand our understanding of the structural determinants of RF-amide-related peptide modulation. Furthermore, our finding that endogenous peptides shift steady-state desensitization suggests that RF-amides could impact the role of ASIC1a in both pain and neuronal damage following stroke and ischemia.


Assuntos
Isquemia Encefálica/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Dor/metabolismo , Canais de Sódio/metabolismo , Acidente Vascular Cerebral/metabolismo , Canais Iônicos Sensíveis a Ácido , Acidose/genética , Acidose/metabolismo , Amidas/metabolismo , Animais , Isquemia Encefálica/genética , Morte Celular/genética , Medo , Humanos , Concentração de Íons de Hidrogênio , Aprendizagem , Proteínas de Membrana/genética , Camundongos , Mutação , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neuropeptídeos/genética , Dor/genética , Estrutura Terciária de Proteína/genética , Canais de Sódio/genética , Especificidade da Espécie , Acidente Vascular Cerebral/genética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA