Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Theor Appl Genet ; 137(6): 135, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761248

RESUMO

KEY MESSAGE: Sustainable winter production in lettuce requires freezing tolerant varieties. This study identified a wild-type allele of LsCBF7 that could contribute to freezing tolerance improvement in lettuce. Lettuce is one of the most consumed vegetables globally. While ideally grown in 13-21 °C, its cultivation extends into winter in milder climates. However, occasional freezing temperatures can significantly reduce yields. Therefore, the development of freezing-tolerant lettuce varieties has become a long-term goal of lettuce breeding programs. Despite its significance, our understanding of freezing tolerance in lettuce remains limited. Plants have evolved a coping mechanism against freezing, known as cold acclimation, whereby they can increase freezing tolerance when pre-exposed to low nonfreezing temperatures. The CBF pathway is well-known for its central role in cold acclimation. Previously, we identified 14 CBF genes in lettuce and discovered that one of them, LsCBF7, had a loss-of-function mutation. In this study, we uncovered that accessions from colder regions carried the wild-type allele of LsCBF7 and this allele likely contributed to increased freezing tolerance, with 14% of the lettuce population carrying this allele. Interestingly, in wild lettuce (L. serriola) that is considered a progenitor of cultivated lettuce, this wild-type allele was much more common, with a frequency of 90%. This finding suggests that this wild-type allele may have undergone negative selection during the domestication or breeding of lettuce. Our data strongly indicate that this allele could be linked to early bolting, an undesirable trait in lettuce, which may have driven the negative selection. While this wild-type allele shows promise for improving freezing tolerance in lettuce, it is crucial to decouple it from the early bolting trait to fully harness its potential in lettuce breeding.


Assuntos
Aclimatação , Alelos , Domesticação , Congelamento , Lactuca , Melhoramento Vegetal , Lactuca/genética , Lactuca/crescimento & desenvolvimento , Lactuca/fisiologia , Aclimatação/genética , Seleção Genética , Proteínas de Plantas/genética , Fenótipo
2.
Plant Dis ; 108(2): 407-415, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37578366

RESUMO

Ashy stem blight (ASB) caused by Macrophomina phaseolina (Tassi) Goidanich affects the common bean (Phaseolus vulgaris L.) at all growing stages. Higher levels of resistance were observed in Andean common beans, but specific resistant quantitative trait loci (QTLs) conferring resistance to this pathogen have not been reported in this gene pool. The objectives of this research were to: (i) conduct a genome-wide association study (GWAS) and QTL mapping for resistance in the Andean breeding line PRA154; and (ii) identify single nucleotide polymorphism (SNP) markers and candidate genes for ASB resistance. Phenotyping was conducted under greenhouse conditions by inoculating the 107 F6:7 recombinant inbred lines (RILs) derived from the cross between the susceptible cultivar 'Verano' and the partial-resistant breeding line PRA154 twice with the M. phaseolina isolate PRI21. Genotyping was performed with 109,040 SNPs distributed across all 11 P. vulgaris chromosomes. A novel major QTL was located between 28,761,668 and 31,263,845 bp, extending 2.5 Mbp on chromosome Pv07, and the highest significant SNP markers were Chr07_28761668_A_G, Chr07_29131720_G_A, and Chr07_31263845_C_T with the highest LOD (more than 10 in most of the cases) and R-squared values, explaining 40% of the phenotypic variance of the PRI21 isolate. The gene Phvul.007G173900 (methylcrotonyl-CoA carboxylase alpha chain and mitochondrial 3-methylcrotonyl-CoA carboxylase 1 [MCCA]) with a size of 10,891 bp, located between 29,131,591 and 29,142,481 bp on Pv07, was identified as one candidate for ASB resistance in PRA154, and it contained Chr07_29131720_G_A. The QTL and genetic marker information could be used to assist common bean breeders to develop germplasm and cultivars with ASB resistance through molecular breeding.


Assuntos
Phaseolus , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Estudo de Associação Genômica Ampla , Phaseolus/genética , Melhoramento Vegetal , Mapeamento Cromossômico
3.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894961

RESUMO

Cowpea (Vigna unguiculata (L.) Walp.) is a diploid legume crop used for human consumption, feed for livestock, and cover crops. Earlier reports have shown that salinity has been a growing threat to cowpea cultivation. The objectives of this study were to conduct a genome-wide association study (GWAS) to identify SNP markers and to investigate candidate genes for salt tolerance in cowpea. A total of 331 cowpea genotypes were evaluated for salt tolerance by supplying a solution of 200 mM NaCl in our previous work. The cowpea panel was genotyped using a whole genome resequencing approach, generating 14,465,516 SNPs. Moreover, 5,884,299 SNPs were used after SNP filtering. GWAS was conducted on a total of 296 cowpea genotypes that have high-quality SNPs. BLINK was used for conducting GWAS. Results showed (1) a strong GWAS peak on an 890-bk region of chromosome 2 for leaf SPAD chlorophyll under salt stress in cowpea and harboring a significant cluster of nicotinamide adenine dinucleotide (NAD) dependent epimerase/dehydratase genes such as Vigun02g128900.1, Vigun02g129000.1, Vigun02g129100.1, Vigun02g129200.1, and Vigun02g129500.1; (2) two GWAS peaks associated with relative tolerance index for chlorophyll were identified on chromosomes 1 and 2. The peak on chromosome 1 was defined by a cluster of 10 significant SNPs mapped on a 5 kb region and was located in the vicinity of Vigun01g086000.1, encoding for a GATA transcription factor. The GWAS peak on chromosome 2 was defined by a cluster of 53 significant SNPs and mapped on a 68 bk region of chromosome 2, and (3) the highest GWAS peak was identified on chromosome 3, and this locus was associated with leaf score injury. This peak was within the structure of a potassium channel gene (Vigun03g144700.1). To the best of our knowledge, this is one the earliest reports on the salt tolerance study of cowpea using whole genome resequencing data.


Assuntos
Vigna , Humanos , Vigna/genética , Plântula/genética , Estudo de Associação Genômica Ampla , Tolerância ao Sal/genética , Clorofila
4.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894980

RESUMO

The common bean (Phaseolus vulgaris L.) is a globally cultivated leguminous crop. Fusarium wilt (FW), caused by Fusarium oxysporum f. sp. phaseoli (Fop), is a significant disease leading to substantial yield loss in common beans. Disease-resistant cultivars are recommended to counteract this. The objective of this investigation was to identify single nucleotide polymorphism (SNP) markers associated with FW resistance and to pinpoint potential resistant common bean accessions within a core collection, utilizing a panel of 157 accessions through the Genome-wide association study (GWAS) approach with TASSEL 5 and GAPIT 3. Phenotypes for Fop race 1 and race 4 were matched with genotypic data from 4740 SNPs of BARCBean6K_3 Infinium Bea Chips. After ranking the 157-accession panel and revealing 21 Fusarium wilt-resistant accessions, the GWAS pinpointed 16 SNPs on chromosomes Pv04, Pv05, Pv07, Pv8, and Pv09 linked to Fop race 1 resistance, 23 SNPs on chromosomes Pv03, Pv04, Pv05, Pv07, Pv09, Pv10, and Pv11 associated with Fop race 4 resistance, and 7 SNPs on chromosomes Pv04 and Pv09 correlated with both Fop race 1 and race 4 resistances. Furthermore, within a 30 kb flanking region of these associated SNPs, a total of 17 candidate genes were identified. Some of these genes were annotated as classical disease resistance protein/enzymes, including NB-ARC domain proteins, Leucine-rich repeat protein kinase family proteins, zinc finger family proteins, P-loopcontaining nucleoside triphosphate hydrolase superfamily, etc. Genomic prediction (GP) accuracy for Fop race resistances ranged from 0.26 to 0.55. This study advanced common bean genetic enhancement through marker-assisted selection (MAS) and genomic selection (GS) strategies, paving the way for improved Fop resistance.


Assuntos
Fusarium , Phaseolus , Fusarium/genética , Estudo de Associação Genômica Ampla , Phaseolus/genética , Genômica , Doenças das Plantas/genética , Resistência à Doença/genética
5.
BMC Genomics ; 23(1): 100, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123403

RESUMO

BACKGROUND: Previous reports have shown that soil salinity is a growing threat to cowpea production, and thus the need for breeding salt-tolerant cowpea cultivars. A total of 234 Multi-Parent Advanced Generation Inter-Cross (MAGIC) lines along with their 8 founders were evaluated for salt tolerance under greenhouse conditions. The objectives of this study were to evaluate salt tolerance in a multi-parent advanced generation inter-cross (MAGIC) cowpea population, to identify single nucleotide polymorphism (SNP) markers associated with salt tolerance, and to assess the accuracy of genomic selection (GS) in predicting salt tolerance, and to explore possible epistatic interactions affecting salt tolerance in cowpea. Phenotyping was validated through the use of salt-tolerant and salt-susceptible controls that were previously reported. Genome-wide association study (GWAS) was conducted using a total of 32,047 filtered SNPs. The epistatic interaction analysis was conducted using the PLINK platform. RESULTS: Results indicated that: (1) large variation in traits evaluated for salt tolerance was identified among the MAGIC lines, (2) a total of 7, 2, 18, 18, 3, 2, 5, 1, and 23 were associated with number of dead plants, salt injury score, leaf SPAD chlorophyll under salt treatment, relative tolerance index for leaf SPAD chlorophyll, fresh leaf biomass under salt treatment, relative tolerance index for fresh leaf biomass, relative tolerance index for fresh stem biomass, relative tolerance index for the total above-ground fresh biomass, and relative tolerance index for plant height, respectively, with overlapping SNP markers between traits, (3) candidate genes encoding for proteins involved in ion transport such as Na+/Ca2+ K+ independent exchanger and H+/oligopeptide symporter were identified, and (4) epistatic interactions were identified. CONCLUSIONS: These results will have direct applications in breeding programs aiming at improving salt tolerance in cowpea through marker-assisted selection. To the best of our knowledge, this study was one of the earliest reports using a MAGIC population to investigate the genetic architecture of salt tolerance in cowpea.


Assuntos
Tolerância ao Sal , Vigna , Estudo de Associação Genômica Ampla , Humanos , Pais , Fenótipo , Polimorfismo de Nucleotídeo Único , Tolerância ao Sal/genética , Vigna/genética
6.
BMC Genomics ; 22(1): 478, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174825

RESUMO

BACKGROUND: Downy mildew, the most devastating disease of spinach (Spinacia oleracea L.), is caused by the oomycete Peronospora effusa [=P. farinosa f. sp. spinaciae]. The P. effusa shows race specificities to the resistant host and comprises 19 reported races and many novel isolates. Sixteen new P. effusa races were identified during the past three decades, and the new pathogen races are continually overcoming the genetic resistances used in commercial cultivars. A spinach breeding population derived from the cross between cultivars Whale and Lazio was inoculated with P. effusa race 16 in an environment-controlled facility; disease response was recorded and genotyped using genotyping by sequencing (GBS). The main objective of this study was to identify resistance-associated single nucleotide polymorphism (SNP) markers from the cultivar Whale against the P. effusa race 16. RESULTS: Association analysis conducted using GBS markers identified six significant SNPs (S3_658,306, S3_692697, S3_1050601, S3_1227787, S3_1227802, S3_1231197). The downy mildew resistance locus from cultivar Whale was mapped to a 0.57 Mb region on chromosome 3, including four disease resistance candidate genes (Spo12736, Spo12784, Spo12908, and Spo12821) within 2.69-11.28 Kb of the peak SNP. CONCLUSIONS: Genomewide association analysis approach was used to map the P. effusa race 16 resistance loci and identify associated SNP markers and the candidate genes. The results from this study could be valuable in understanding the genetic basis of downy mildew resistance, and the SNP marker will be useful in spinach breeding to select resistant lines.


Assuntos
Oomicetos , Peronospora , Resistência à Doença , Estudos de Associação Genética , Peronospora/genética , Melhoramento Vegetal , Doenças das Plantas , Spinacia oleracea/genética
7.
Proteomics ; 20(19-20): e1900420, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32672417

RESUMO

Lettuce (Lactuca sativa), cultivated mainly for its edible leaves and stems, is an important vegetable crop worldwide. Genomes of cultivated lettuce (L. sativa cv. Salinas) and its wild relative L. serriola accession US96UC23 are sequenced, but a clear understanding of the genetic basis for divergence in phenotypes of the two species is lacking. Tandem mass tag (TMT) based mass spectrometry is used to quantitatively compare protein levels between these two species. Four-day old seedlings is transplanted into 500 mL pots filled with soil. Plants are grown for 8 weeks under 250 µmol m-2 sec-1 continuous light, 20 °C and relative humidity between 50-70%. Leaf discs (1 cm diameter) from three individuals per biological replicate are analyzed. A total of 3000 proteins are identified, of which the levels of 650 are significantly different between 'Salinas' and US96UC23. Pathway analysis indicated a higher flux of carbon in 'Salinas' than US96UC23. Many essential metabolic pathways such as tetrapyrrole metabolism and fatty acid biosynthesis are upregulated in 'Salinas' compared with US96UC23. This study provides a reference proteome for researchers interested in understanding lettuce biology and improving traits for cultivation.


Assuntos
Lactuca , Proteômica , Humanos , Lactuca/fisiologia , Redes e Vias Metabólicas , Fenótipo , Folhas de Planta
8.
BMC Genomics ; 20(1): 904, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775625

RESUMO

BACKGROUND: Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, has been one of the most devastating pathogens affecting soybean production. In the United States alone, SCN damage accounted for more than $1 billion loss annually. With a narrow genetic background of the currently available SCN-resistant commercial cultivars, high risk of resistance breakdown can occur. The objectives of this study were to conduct a genome-wide association study (GWAS) to identify QTL, SNP markers, and candidate genes associated with soybean leaf chlorophyll content tolerance to SCN infection, and to carry out a genomic selection (GS) study for the chlorophyll content tolerance. RESULTS: A total of 172 soybean genotypes were evaluated for the effect of SCN HG Type 1.2.3.5.6.7 (race 4) on soybean leaf chlorophyll. The soybean lines were genotyped using a total of 4089 filtered and high-quality SNPs. Results showed that (1) a large variation in SCN tolerance based on leaf chlorophyll content indices (CCI); (2) a total of 22, 14, and 16 SNPs associated with CCI of non-SCN-infected plants, SCN-infected plants, and reduction of CCI SCN, respectively; (3) a new locus of chlorophyll content tolerance to SCN mapped on chromosome 3; (4) candidate genes encoding for Leucine-rich repeat protein, plant hormone signaling molecules, and biomolecule transporters; and (5) an average GS accuracy ranging from 0.31 to 0.46 with all SNPs and varying from 0.55 to 0.76 when GWAS-derived SNP markers were used across five models. This study demonstrated the potential of using genome-wide selection to breed chlorophyll-content-tolerant soybean for managing SCN. CONCLUSIONS: In this study, soybean accessions with higher CCI under SCN infestation, and molecular markers associated with chlorophyll content related to SCN were identified. In addition, a total of 15 candidate genes associated with chlorophyll content tolerance to SCN in soybean were also identified. These candidate genes will lead to a better understanding of the molecular mechanisms that control chlorophyll content tolerance to SCN in soybean. Genomic selection analysis of chlorophyll content tolerance to SCN showed that using significant SNPs obtained from GWAS could provide better GS accuracy.


Assuntos
Clorofila/metabolismo , Genoma de Planta , Estudo de Associação Genômica Ampla , Genômica , Glycine max/genética , Glycine max/metabolismo , Interações Hospedeiro-Parasita/genética , Animais , Genes de Plantas , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único , Seleção Genética , Glycine max/parasitologia , Tylenchoidea
9.
Plant Dis ; 103(5): 791-803, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30939071

RESUMO

Downy mildew on spinach is caused by Peronospora effusa, an oomycete pathogen that poses a challenge to spinach production worldwide, especially in organic production. Following infection, P. effusa produces abundant amounts of asexual sporangia. Sporangia become windborne and initiate new infections locally or distantly, leading to widespread epidemics. Oospores produced from the union of opposite mating types have been observed within infected leaves and seeds and may remain viable for many years. Sexual reproduction increases the genetic diversity of P. effusa through sexual recombination, and thus, the movement of oospores on seed has likely fueled the rapid explosion of new pathotypes in different regions of the world over the past 20 years. This review summarizes recent advances in spinach downy mildew research, especially in light of the findings of oospores in contemporary commercial spinach seed lots as well as their germination. Knowledge of the role of the oospores and other aspects of the disease cycle can directly translate into new and effective disease management strategies.


Assuntos
Peronospora , Doenças das Plantas , Spinacia oleracea , Peronospora/fisiologia , Doenças das Plantas/prevenção & controle , Folhas de Planta/microbiologia , Spinacia oleracea/microbiologia
10.
Theor Appl Genet ; 131(1): 79-91, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28948303

RESUMO

KEY MESSAGE: This is the first report on association analysis of salt tolerance and identification of SNP markers associated with salt tolerance in cowpea. Cowpea (Vigna unguiculata (L.) Walp) is one of the most important cultivated legumes in Africa. The worldwide annual production in cowpea dry seed is 5.4 million metric tons. However, cowpea is unfavorably affected by salinity stress at germination and seedling stages, which is exacerbated by the effects of climate change. The lack of knowledge on the genetic underlying salt tolerance in cowpea limits the establishment of a breeding strategy for developing salt-tolerant cowpea cultivars. The objectives of this study were to conduct association mapping for salt tolerance at germination and seedling stages and to identify SNP markers associated with salt tolerance in cowpea. We analyzed the salt tolerance index of 116 and 155 cowpea accessions at germination and seedling stages, respectively. A total of 1049 SNPs postulated from genotyping-by-sequencing were used for association analysis. Population structure was inferred using Structure 2.3.4; K optimal was determined using Structure Harvester. TASSEL 5, GAPIT, and FarmCPU involving three models such as single marker regression, general linear model, and mixed linear model were used for the association study. Substantial variation in salt tolerance index for germination rate, plant height reduction, fresh and dry shoot biomass reduction, foliar leaf injury, and inhibition of the first trifoliate leaf was observed. The cowpea accessions were structured into two subpopulations. Three SNPs, Scaffold87490_622, Scaffold87490_630, and C35017374_128 were highly associated with salt tolerance at germination stage. Seven SNPs, Scaffold93827_270, Scaffold68489_600, Scaffold87490_633, Scaffold87490_640, Scaffold82042_3387, C35069468_1916, and Scaffold93942_1089 were found to be associated with salt tolerance at seedling stage. The SNP markers were consistent across the three models and could be used as a tool to select salt-tolerant lines for breeding improved cowpea tolerance to salinity.


Assuntos
Germinação , Tolerância ao Sal/genética , Plântula/fisiologia , Vigna/genética , Marcadores Genéticos , Variação Genética , Genética Populacional , Genótipo , Modelos Genéticos , Filogenia , Polimorfismo de Nucleotídeo Único , Vigna/fisiologia
11.
BMC Genomics ; 18(1): 941, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29202697

RESUMO

BACKGROUND: Spinach is a useful source of dietary vitamins and mineral elements. Breeding new spinach cultivars with high nutritional value is one of the main goals in spinach breeding programs worldwide, and identification of single nucleotide polymorphism (SNP) markers for mineral element concentrations is necessary to support spinach molecular breeding. The purpose of this study was to conduct a genome-wide association study (GWAS) and to identify SNP markers associated with mineral elements in the USDA-GRIN spinach germplasm collection. RESULTS: A total of 14 mineral elements: boron (B), calcium (Ca), cobalt (Co), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molybdenum (Mo), sodium (Na), nickel (Ni), phosphorus (P), sulfur (S), and zinc (Zn) were evaluated in 292 spinach accessions originally collected from 29 countries. Significant genetic variations were found among the tested genotypes as evidenced by the 2 to 42 times difference in mineral concentrations. A total of 2402 SNPs identified from genotyping by sequencing (GBS) approach were used for genetic diversity and GWAS. Six statistical methods were used for association analysis. Forty-five SNP markers were identified to be strongly associated with the concentrations of 13 mineral elements. Only two weakly associated SNP markers were associated with K concentration. Co-localized SNPs for different elemental concentrations were discovered in this research. Three SNP markers, AYZV02017731_40, AYZV02094133_57, and AYZV02281036_185 were identified to be associated with concentrations of four mineral components, Co, Mn, S, and Zn. There is a high validating correlation coefficient with r > 0.7 among concentrations of the four elements. Thirty-one spinach accessions, which rank in the top three highest concentrations in each of the 14 mineral elements, were identified as potential parents for spinach breeding programs in the future. CONCLUSIONS: The 45 SNP markers strongly associated with the concentrations of the 13 mineral elements: B, Ca, Co, Cu, Fe, Mg, Mn, Mo, Na, Ni, P, S, and Zn could be used in breeding programs to improve the nutritional quality of spinach through marker-assisted selection (MAS). The 31 spinach accessions with high concentrations of one to several mineral elements can be used as potential parents for spinach breeding programs.


Assuntos
Variação Genética , Estudo de Associação Genômica Ampla/métodos , Minerais/química , Folhas de Planta/química , Polimorfismo de Nucleotídeo Único , Spinacia oleracea/química , Spinacia oleracea/genética , Melhoramento Vegetal , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Análise de Sequência de DNA/métodos , Spinacia oleracea/crescimento & desenvolvimento
12.
Genome ; 59(8): 581-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27490441

RESUMO

Leafminer (Liriomyza langei) is a major insect pest of many important agricultural crops, including spinach (Spinacia oleracea). Use of genetic resistance is an efficient, economic, and environment-friendly method to control this pest. The objective of this research was to conduct association analysis and identify single nucleotide polymorphism (SNP) markers associated with leafminer resistance in spinach germplasm. A total of 300 USDA spinach germplasm accessions were used for the association analysis of leafminer resistance. Genotyping by sequencing (GBS) was used for genotyping and 783 SNPs from GBS were used for association analysis. The leafminer resistance showed a near normal distribution with a wide range from 1.1 to 11.7 stings per square centimeter leaf area, suggesting that the leafminer resistance in spinach is a complex trait controlled by multiple genes with minor effect in this spinach panel. Association analysis indicated that five SNP markers, AYZV02040968_7171, AYZV02076752_412, AYZV02098618_4615, AYZV02147304_383, and AYZV02271373_398, were associated with the leafminer resistance with LOD 2.5 or higher. The SNP markers may be useful for breeders to select plants and lines for leafminer resistance in spinach breeding programs through marker-assisted selection.


Assuntos
Artrópodes/genética , Resistência à Doença/genética , Spinacia oleracea/genética , Animais , Artrópodes/classificação , Sequência de Bases , Mapeamento Cromossômico , DNA de Plantas/genética , Genes de Plantas , Marcadores Genéticos/genética , Variação Genética , Genótipo , Técnicas de Genotipagem , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência , Spinacia oleracea/classificação
13.
Plants (Basel) ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38475428

RESUMO

The tomato is one of the most important vegetable crops grown worldwide. Tomato brown rugose fruit virus (ToBRFV), a seed-borne tobamovirus, poses a serious threat to tomato production due to its ability to break the resistant genes (Tm-1, Tm-2, Tm-22) in tomatoes. The objective of this work was to identify new resistant source(s) of tomato germplasm against ToBRFV. To achieve this aim, a total of 476 accessions from 12 Solanum species were tested with the ToBRFV US isolate for their resistance and susceptibility. As a result, a total of 44 asymptomatic accessions were identified as resistant/tolerant, including thirty-one accessions of S. pimpinellifolium, one accession of S. corneliomulleri, four accessions of S. habrochaites, three accessions of S. peruvianum, and five accessions of S. subsection lycopersicon hybrid. Further analyses using serological tests identified four highly resistant S. pimpinellifolium lines, PI 390713, PI 390714, PI 390716, and PI 390717. The inheritance of resistance in the selected lines was verified in the next generation and confirmed using RT-qPCR. To our knowledge, this is a first report of high resistance to ToBRFV in S. pimpinellifolium. These new genetic resources will expand the genetic pool available for breeders to develop new resistant cultivars of tomato against ToBRFV.

14.
Plants (Basel) ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732474

RESUMO

Genomic selection (GS) is a marker-based selection method used to improve the genetic gain of quantitative traits in plant breeding. A large number of breeding datasets are available in the soybean database, and the application of these public datasets in GS will improve breeding efficiency and reduce time and cost. However, the most important problem to be solved is how to improve the ability of across-population prediction. The objectives of this study were to perform genomic prediction (GP) and estimate the prediction ability (PA) for seed oil and protein contents in soybean using available public datasets to predict breeding populations in current, ongoing breeding programs. In this study, six public datasets of USDA GRIN soybean germplasm accessions with available phenotypic data of seed oil and protein contents from different experimental populations and their genotypic data of single-nucleotide polymorphisms (SNPs) were used to perform GP and to predict a bi-parent-derived breeding population in our experiment. The average PA was 0.55 and 0.50 for seed oil and protein contents within the bi-parents population according to the within-population prediction; and 0.45 for oil and 0.39 for protein content when the six USDA populations were combined and employed as training sets to predict the bi-parent-derived population. The results showed that four USDA-cultivated populations can be used as a training set individually or combined to predict oil and protein contents in GS when using 800 or more USDA germplasm accessions as a training set. The smaller the genetic distance between training population and testing population, the higher the PA. The PA increased as the population size increased. In across-population prediction, no significant difference was observed in PA for oil and protein content among different models. The PA increased as the SNP number increased until a marker set consisted of 10,000 SNPs. This study provides reasonable suggestions and methods for breeders to utilize public datasets for GS. It will aid breeders in developing GS-assisted breeding strategies to develop elite soybean cultivars with high oil and protein contents.

15.
Plants (Basel) ; 13(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38732490

RESUMO

This study investigates the genetic determinants of seed coat color and pattern variations in cowpea (Vigna unguiculata), employing a genome-wide association approach. Analyzing a mapping panel of 296 cowpea varieties with 110,000 single nucleotide polymorphisms (SNPs), we focused on eight unique coat patterns: (1) Red and (2) Cream seed; (3) White and (4) Brown/Tan seed coat; (5) Pink, (6) Black, (7) Browneye and (8) Red/Brown Holstein. Across six GWAS models (GLM, SRM, MLM, MLMM, FarmCPU from GAPIT3, and TASSEL5), 13 significant SNP markers were identified and led to the discovery of 23 candidate genes. Among these, four specific genes may play a direct role in determining seed coat pigment. These findings lay a foundational basis for future breeding programs aimed at creating cowpea varieties aligned with consumer preferences and market requirements.

16.
Hortic Res ; 10(6): uhad076, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37323230

RESUMO

Commercial production of spinach (Spinacia oleracea L.) is centered in California and Arizona in the US, where downy mildew caused by Peronospora effusa is the most destructive disease. Nineteen typical races of P. effusa have been reported to infect spinach, with 16 identified after 1990. The regular appearance of new pathogen races breaks the resistance gene introgressed in spinach. We attempted to map and delineate the RPF2 locus at a finer resolution, identify linked single nucleotide polymorphism (SNP) markers, and report candidate downy mildew resistance (R) genes. Progeny populations segregating for RPF2 locus derived from resistant differential cultivar Lazio were infected using race 5 of P. effusa and were used to study for genetic transmission and mapping analysis in this study. Association analysis performed with low coverage whole genome resequencing-generated SNP markers mapped the RPF2 locus between 0.47 to 1.46 Mb of chromosome 3 with peak SNP (Chr3_1, 221, 009) showing a LOD value of 61.6 in the GLM model in TASSEL, which was within 1.08 Kb from Spo12821, a gene that encodes CC-NBS-LRR plant disease resistance protein. In addition, a combined analysis of progeny panels of Lazio and Whale segregating for RPF2 and RPF3 loci delineated the resistance section in chromosome 3 between 1.18-1.23 and 1.75-1.76 Mb. This study provides valuable information on the RPF2 resistance region in the spinach cultivar Lazio compared to RPF3 loci in the cultivar Whale. The RPF2 and RPF3 specific SNP markers, plus the resistant genes reported here, could add value to breeding efforts to develop downy mildew resistant cultivars in the future.

17.
Plants (Basel) ; 12(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36903902

RESUMO

Sugarcane (Saccharum spp. hybrids) is an economically important crop for both sugar and biofuel industries. Fiber and sucrose contents are the two most critical quantitative traits in sugarcane breeding that require multiple-year and multiple-location evaluations. Marker-assisted selection (MAS) could significantly reduce the time and cost of developing new sugarcane varieties. The objectives of this study were to conduct a genome-wide association study (GWAS) to identify DNA markers associated with fiber and sucrose contents and to perform genomic prediction (GP) for the two traits. Fiber and sucrose data were collected from 237 self-pollinated progenies of LCP 85-384, the most popular Louisiana sugarcane cultivar from 1999 to 2007. The GWAS was performed using 1310 polymorphic DNA marker alleles with three models of TASSEL 5, single marker regression (SMR), general linear model (GLM) and mixed linear model (MLM), and the fixed and random model circulating probability unification (FarmCPU) of R package. The results showed that 13 and 9 markers were associated with fiber and sucrose contents, respectively. The GP was performed by cross-prediction with five models, ridge regression best linear unbiased prediction (rrBLUP), Bayesian ridge regression (BRR), Bayesian A (BA), Bayesian B (BB) and Bayesian least absolute shrinkage and selection operator (BL). The accuracy of GP varied from 55.8% to 58.9% for fiber content and 54.6% to 57.2% for sucrose content. Upon validation, these markers can be applied in MAS and genomic selection (GS) to select superior sugarcane with good fiber and high sucrose contents.

18.
Sci Rep ; 13(1): 21990, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081919

RESUMO

The APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) gene family plays vital roles in plants, serving as a key regulator in responses to abiotic stresses. Despite its significance, a comprehensive understanding of this family in lettuce remains incomplete. In this study, we performed a genome-wide search for the AP2/ERF family in lettuce and identified a total of 224 members. The duplication patterns provided evidence that both tandem and segmental duplications contributed to the expansion of this family. Ka/Ks ratio analysis demonstrated that, following duplication events, the genes have been subjected to purifying selection pressure, leading to selective constraints on their protein sequence. This selective pressure provides a dosage benefit against stresses in plants. Additionally, a transcriptome analysis indicated that some duplicated genes gained novel functions, emphasizing the contribution of both dosage effect and functional divergence to the family functionalities. Furthermore, an orthologous relationship study showed that 60% of genes descended from a common ancestor of Rosid and Asterid lineages, 28% from the Asterid ancestor, and 12% evolved in the lettuce lineage, suggesting lineage-specific roles in adaptive evolution. These results provide valuable insights into the evolutionary mechanisms of the AP2/ERF gene family in lettuce, with implications for enhancing abiotic stress tolerance, ultimately contributing to the genetic improvement of lettuce crop production.


Assuntos
Lactuca , Proteínas de Plantas , Etilenos , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Lactuca/genética , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Front Plant Sci ; 14: 1179357, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313252

RESUMO

Soybean brown rust (SBR), caused by Phakopsora pachyrhizi, is a devastating fungal disease that threatens global soybean production. This study conducted a genome-wide association study (GWAS) with seven models on a panel of 3,082 soybean accessions to identify the markers associated with SBR resistance by 30,314 high quality single nucleotide polymorphism (SNPs). Then five genomic selection (GS) models, including Ridge regression best linear unbiased predictor (rrBLUP), Genomic best linear unbiased predictor (gBLUP), Bayesian least absolute shrinkage and selection operator (Bayesian LASSO), Random Forest (RF), and Support vector machines (SVM), were used to predict breeding values of SBR resistance using whole genome SNP sets and GWAS-based marker sets. Four SNPs, namely Gm18_57,223,391 (LOD = 2.69), Gm16_29,491,946 (LOD = 3.86), Gm06_45,035,185 (LOD = 4.74), and Gm18_51,994,200 (LOD = 3.60), were located near the reported P. pachyrhizi R genes, Rpp1, Rpp2, Rpp3, and Rpp4, respectively. Other significant SNPs, including Gm02_7,235,181 (LOD = 7.91), Gm02_7234594 (LOD = 7.61), Gm03_38,913,029 (LOD = 6.85), Gm04_46,003,059 (LOD = 6.03), Gm09_1,951,644 (LOD = 10.07), Gm10_39,142,024 (LOD = 7.12), Gm12_28,136,735 (LOD = 7.03), Gm13_16,350,701(LOD = 5.63), Gm14_6,185,611 (LOD = 5.51), and Gm19_44,734,953 (LOD = 6.02), were associated with abundant disease resistance genes, such as Glyma.02G084100, Glyma.03G175300, Glyma.04g189500, Glyma.09G023800, Glyma.12G160400, Glyma.13G064500, Glyma.14g073300, and Glyma.19G190200. The annotations of these genes included but not limited to: LRR class gene, cytochrome 450, cell wall structure, RCC1, NAC, ABC transporter, F-box domain, etc. The GWAS based markers showed more accuracies in genomic prediction than the whole genome SNPs, and Bayesian LASSO model was the ideal model in SBR resistance prediction with 44.5% ~ 60.4% accuracies. This study aids breeders in predicting selection accuracy of complex traits such as disease resistance and can shorten the soybean breeding cycle by the identified markers.

20.
Plants (Basel) ; 12(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37514320

RESUMO

Cowpea (Vigna unguiculata L. Walp., 2n = 2x = 22) is a protein-rich crop that complements staple cereals for humans and serves as fodder for livestock. It is widely grown in Africa and other developing countries as the primary source of protein in the diet; therefore, it is necessary to identify the protein-related loci to improve cowpea breeding. In the current study, we conducted a genome-wide association study (GWAS) on 161 cowpea accessions (151 USDA germplasm plus 10 Arkansas breeding lines) with a wide range of seed protein contents (21.8~28.9%) with 110,155 high-quality whole-genome single-nucleotide polymorphisms (SNPs) to identify markers associated with protein content, then performed genomic prediction (GP) for future breeding. A total of seven significant SNP markers were identified using five GWAS models (single-marker regression (SMR), the general linear model (GLM), Mixed Linear Model (MLM), Fixed and Random Model Circulating Probability Unification (FarmCPU), and Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK), which are located at the same locus on chromosome 8 for seed protein content. This locus was associated with the gene Vigun08g039200, which was annotated as the protein of the thioredoxin superfamily, playing a critical function for protein content increase and nutritional quality improvement. In this study, a genomic prediction (GP) approach was employed to assess the accuracy of predicting seed protein content in cowpea. The GP was conducted using cross-prediction with five models, namely ridge regression best linear unbiased prediction (rrBLUP), Bayesian ridge regression (BRR), Bayesian A (BA), Bayesian B (BB), and Bayesian least absolute shrinkage and selection operator (BL), applied to seven random whole genome marker sets with different densities (10 k, 5 k, 2 k, 1 k, 500, 200, and 7), as well as significant markers identified through GWAS. The accuracies of the GP varied between 42.9% and 52.1% across the seven SNPs considered, depending on the model used. These findings not only have the potential to expedite the breeding cycle through early prediction of individual performance prior to phenotyping, but also offer practical implications for cowpea breeding programs striving to enhance seed protein content and nutritional quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA