Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 159(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37655767

RESUMO

Semiconductor alloy materials are highly versatile due to their adjustable properties; however, exploring their structural space is a challenging task that affects the control of their properties. Traditional methods rely on ad hoc design based on the understanding of known chemistry and crystallography, which have limitations in computational efficiency and search space. In this work, we present ChecMatE (Chemical Material Explorer), a software package that automatically generates machine learning potentials (MLPs) and uses global search algorithms to screen semiconductor alloy materials. Taking advantage of MLPs, ChecMatE enables a more efficient and cost-effective exploration of the structural space of materials and predicts their energy and relative stability with ab initio accuracy. We demonstrate the efficacy of ChecMatE through a case study of the InxGa1-xN system, where it accelerates structural exploration at reduced costs. Our automatic framework offers a promising solution to the challenging task of exploring the structural space of semiconductor alloy materials.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38624095

RESUMO

The realization of ferromagnetic insulating ground state is a critical prerequisite for spintronic applications. By applying electric field-controlled ionic liquid gating (ILG) to stoichiometry La0.67Sr0.33CoO3 thin films, the doping of protons (H+) has been achieved for the first time. Furthermore, a hitherto-unreported ferromagnetic insulating phase with a remarkably high Tc up to 180 K has been observed which can be attributed to the doping of H+ and the formation of oxygen vacancies (VO). The chemical formula of the dual-ion migrated film has been identified as La2/3Sr1/3CoO8/3H2/3 based on combined Co L23-edge absorption spectra and configuration interaction cluster calculations, from which we are able to explain the ferromagnetic ground state in terms of the distinct magnetic moment contributions from Co ions with octahedral (Oh) and tetrahedral (Td) symmetries following antiparallel spin alignments. Further density functional theory calculations have been performed to verify the functionality of H+ as the transfer ion and the origin of the novel ferromagnetic insulating ground state. Our results provide a fundamental understanding of the ILG regulation mechanism and shed light on the manipulating of more functionalities in other correlated compounds through dual-ion manipulation.

3.
Nat Commun ; 14(1): 3638, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336926

RESUMO

Transition metal oxides are promising candidates for the next generation of spintronic devices due to their fascinating properties that can be effectively engineered by strain, defects, and microstructure. An excellent example can be found in ferroelastic LaCoO3 with paramagnetism in bulk. In contrast, unexpected ferromagnetism is observed in tensile-strained LaCoO3 films, however, its origin remains controversial. Here we simultaneously reveal the formation of ordered oxygen vacancies and previously unreported long-range suppression of CoO6 octahedral rotations throughout LaCoO3 films. Supported by density functional theory calculations, we find that the strong modification of Co 3d-O 2p hybridization associated with the increase of both Co-O-Co bond angle and Co-O bond length weakens the crystal-field splitting and facilitates an ordered high-spin state of Co ions, inducing an emergent ferromagnetic-insulating state. Our work provides unique insights into underlying mechanisms driving the ferromagnetic-insulating state in tensile-strained ferroelastic LaCoO3 films while suggesting potential applications toward low-power spintronic devices.

4.
J Phys Chem Lett ; 13(42): 9815-9821, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36228113

RESUMO

Bismuth vanadate (BiVO4) is a promising photoanode material for solar-driven water splitting, and knowledge of the photocarrier dynamics in BiVO4 could offer guidance to propel the development of the photoanode performance. Herein, we uncovered the nature of various photogenerated transient species in BiVO4 and extracted their respective dynamics. We found spectral and dynamic evidence that the electrons in the conduction band collapsed into severely localized small electron polarons on a subpicosecond time scale, while the holes in the valence band remained delocalized and accounted for the photoconductivity. In the following tens to hundreds of picoseconds, the electron polaron captured the hole to form a self-trapped exciton via a bimolecular reaction mechanism, and in consequence, the hole was immobilized. Our finding suggests that exciton dissociation strategies should be taken into account in the design of the BiVO4-based water-splitting applications in order to enhance charge transport and suppress charge recombination.

5.
Adv Sci (Weinh) ; 9(6): e2104141, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34997681

RESUMO

Oxide semiconductors are key materials in many technologies from flat-panel displays,solar cells to transparent electronics. However, many potential applications are hindered by the lack of high mobility p-type oxide semiconductors due to the localized O-2p derived valence band (VB) structure. In this work, the VB structure modulation is reported for perovskite Ba2 BiMO6 (M = Bi, Nb, Ta) via the Bi 6s2 lone pair state to achieve p-type oxide semiconductors with high hole mobility up to 21 cm2 V-1 s-1 , and optical bandgaps widely varying from 1.5 to 3.2 eV. Pulsed laser deposition is used to grow high quality epitaxial thin films. Synergistic combination of hard x-ray photoemission, x-ray absorption spectroscopies, and density functional theory calculations are used to gain insight into the electronic structure of Ba2 BiMO6 . The high mobility is attributed to the highly dispersive VB edges contributed from the strong coupling of Bi 6s with O 2p at the top of VB that lead to low hole effective masses (0.4-0.7 me ). Large variation in bandgaps results from the change in the energy positions of unoccupied Bi 6s orbital or Nb/Ta d orbitals that form the bottom of conduction band. P-N junction diode constructed with p-type Ba2 BiTaO6 and n-type Nb doped SrTiO3 exhibits high rectifying ratio of 1.3 × 104 at ±3 V, showing great potential in fabricating high-quality devices. This work provides deep insight into the electronic structure of Bi3+ based perovskites and guides the development of new p-type oxide semiconductors.

6.
ACS Appl Mater Interfaces ; 14(28): 31911-31919, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35796315

RESUMO

The quality of perovskite films plays a crucial role in the performance of the corresponding devices. However, the commonly employed perovskite polycrystalline films often contain a high density of defects created during film production and cell operation, including unsaturated coordinated Pb2+ and Pb0, which can act as nonradiative recombination centers, thus reducing open-circuit voltage. Effectively eliminating both kinds of defects is an important subject of research to improve the power conversion efficiency (PCE). Here, we employ hydrogen octylphosphonate potassium (KHOP) as a multifunctional additive to passivate defects. The molecule is introduced into perovskite precursor solution to regulate the perovskite film growth process by coordinating with Pb, which can not only passivate the Pb2+ defect but also effectively inhibit the production of Pb0; at the same time, the presence of K+ reduces device hysteresis by inhibiting I- migration and finally realizes double passivation of Pb2+ and I--based defects. Moreover, the moderate hydrophobic alkyl chain in the molecule improves the moisture stability. Ultimately, the optimal efficiency can reach 22.21%.

7.
Adv Mater ; 33(50): e2006230, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33797084

RESUMO

Wide bandgap oxide semiconductors constitute a unique class of materials that combine properties of electrical conductivity and optical transparency. They are being widely used as key materials in optoelectronic device applications, including flat-panel displays, solar cells, OLED, and emerging flexible and transparent electronics. In this article, an up-to-date review on both the fundamental understanding of materials physics of oxide semiconductors, and recent research progress on design of new materials and high-performing thin film transistor (TFT) devices in the context of fundamental understanding is presented. In particular, an in depth overview is first provided on current understanding of the electronic structures, defect and doping chemistry, optical and transport properties of oxide semiconductors, which provide essential guiding principles for new material design and device optimization. With these principles, recent advances in design of p-type oxide semiconductors, new approaches for achieving cost-effective transparent (flexible) electrodes, and the creation of high mobility 2D electron gas (2DEG) at oxide surfaces and interfaces with a wealth of fascinating physical properties of great potential for novel device design are then reviewed. Finally, recent progress and perspective of oxide TFT based on new oxide semiconductors, 2DEG, and low-temperature solution processed oxide semiconductor for flexible electronics will be reviewed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA