Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Periodontal Res ; 59(1): 84-93, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37814383

RESUMO

BACKGROUND AND OBJECTIVES: The utilization of natural products to enhance the function of periodontal ligament cells (PDLCs) has emerged as a popular area of research. Recent investigations have demonstrated that sappanchalcone (SC) possesses pharmacological properties such as anti-inflammatory and osteoprotective effects. This study aims to explore the impact of SC on the in vivo and in vitro osteogenic differentiation ability of PDLCs. MATERIALS: Cell proliferation was quantified using the CCK-8 assay, while gene expression levels were assessed through qRT-PCR analysis. Osteoblast differentiation capacity was evaluated by employing Alizarin red staining (ARS), alkaline phosphatase (ALP) staining and western blot (WB) analysis. A rat model of periodontitis was established utilizing the tether-wire method. Micro-CT imaging and hematoxylin and eosin (HE) staining were employed to evaluate alveolar bone resorption. Masson's trichrome staining was utilized to observe fiber alignment, whereas immunohistochemistry (IHC) techniques were applied for detecting osteogenic and inflammatory factors. RESULTS: The results from the CCK-8 assay indicate no observed cytotoxicity for concentrations of 1, 5, or 10 nM for SC treatment (p < .05), while qRT-PCR analysis demonstrates a significant decrease in inflammatory factors such as MMP-1 and IL-6 with treatment by SC (p < .05). Additionally, western blotting reveals an increase in protein expression levels of Runx2 and OPN within PDLCs treated with SC compared to control groups (p < .05), which is further supported by ARS and ALP staining indicating an increase in mineralized nodules formation along with elevated ALP content within these cells following treatment with this compound (p < .05). Finally, both HE staining as well as micro-CT imaging suggest potential benefits associated with using this compound including slowing alveolar bone resorption while simultaneously promoting junctional epithelium proliferation. CONCLUSIONS: Our in vitro and in vivo findings suggest that SC can effectively enhance the inflammatory response of PDLCs and promote their osteogenic differentiation ability under inflammatory conditions, indicating its potential as a promising therapeutic agent for improving periodontal inflammation and bone formation.


Assuntos
Reabsorção Óssea , Chalconas , Osteogênese , Ratos , Animais , Sincalida/farmacologia , Diferenciação Celular , Ligamento Periodontal , Células Cultivadas
2.
J Biochem Mol Toxicol ; 33(5): e22289, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30657620

RESUMO

Triclocarban (TCC), which is used as an antimicrobial agent in personal care products, has been widely detected in aquatic ecosystems. However, the consequence of TCC exposure on embryo development is still elusive. Here, by using zebrafish embryos, we aimed to understand the developmental defects caused by TCC exposure. After exposure to 0.3, 30, and 300 µg/L TCC from 4-hour postfertilization (hpf) to 120 hpf, we observed that TCC exposure significantly increased the mortality and malformation, delayed hatching, and reduced body length. Exposure to TCC also affected the heart rate and expressions of cardiac development-related genes in zebrafish embryos. In addition, TCC exposure altered the expressions of the genes involved in hormonal pathways, indicating its endocrine disrupting effects. In sum, our data highlight the impact of TCC on embryo development and its interference with the hormone system of zebrafish.


Assuntos
Anti-Infecciosos/efeitos adversos , Carbanilidas/efeitos adversos , Embrião não Mamífero/embriologia , Desenvolvimento Embrionário/efeitos dos fármacos , Disruptores Endócrinos/efeitos adversos , Poluentes Químicos da Água/efeitos adversos , Peixe-Zebra/embriologia , Animais , Anti-Infecciosos/farmacologia , Carbanilidas/farmacologia , Embrião não Mamífero/patologia , Disruptores Endócrinos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Poluentes Químicos da Água/farmacologia
3.
iScience ; 27(9): 110638, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39252968

RESUMO

Anoikis resistance allows cancer cells to avoid death caused by detachment from the extracellular matrix's adhesion, enabling these cells to infiltrate and migrate to regions such as the peritoneum. This study emphasizes GRP94's involvement in anoikis resistance and peritoneal metastasis in gastric cancer (GC). It's found that GRP94 overexpression, linked to poor prognosis, was potentially due to SP1 and GRP94 promoter interactions, confirmed through dual luciferase reporter (DLR), chromatin immunoprecipitation (ChIP), and quantitative real-time PCR (real-time qPCR). Increased GRP94 enhanced GC cells' anoikis resistance and metastasis. Decreasing GRP94 had opposite effects, potentially through yes-associated protein (YAP)/TEAD1 axis inhibition, with raised YAP phosphorylation and decreased TEAD1 levels detected by western blotting (WB). Inhibiting YAP counteracted GRP94's effects on anoikis resistance and metastasis, while activating YAP reversed the effects of GRP94 reduction. Animal experiments verified GRP94's contribution to GC's peritoneal metastasis. In conclusion, our work highlights the effect of GRP94 on anoikis resistance, showing potential value in treating peritoneal metastasis of GC.

4.
Cancer Biol Med ; 20(7)2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37417294

RESUMO

OBJECTIVE: Organoids are a powerful tool with broad application prospects in biomedicine. Notably, they provide alternatives to animal models for testing potential drugs before clinical trials. However, the number of passages for which organoids maintain cellular vitality ex vivo remains unclear. METHODS: Herein, we constructed 55 gastric organoids from 35 individuals, serially passaged the organoids, and captured microscopic images for phenotypic evaluation. Senescence-associated ß-galactosidase (SA-ß-Gal), cell diameter in suspension, and gene expression reflecting cell cycle regulation were examined. The YOLOv3 object detection algorithm integrated with a convolutional block attention module (CBAM) was used to evaluate organoid vitality. RESULTS: SA-ß-Gal staining intensity; single-cell diameter; and expression of p15, p16, p21, CCNA2, CCNE2, and LMNB1 reflected the progression of aging in organoids during passaging. The CBAM-YOLOv3 algorithm precisely evaluated aging organoids on the basis of organoid average diameter, organoid number, and number × diameter, and the findings positively correlated with SA-ß-Gal staining and single-cell diameter. Organoids derived from normal gastric mucosa had limited passaging ability (passages 1-5), before aging, whereas tumor organoids showed unlimited passaging potential for more than 45 passages (511 days) without showing clear senescence. CONCLUSIONS: Given the lack of indicators for evaluating organoid growth status, we established a reliable approach for integrated analysis of phenotypic parameters that uses an artificial intelligence algorithm to indicate organoid vitality. This method enables precise evaluation of organoid status in biomedical studies and monitoring of living biobanks.


Assuntos
Inteligência Artificial , Senescência Celular , Animais , Humanos , Envelhecimento , Ciclo Celular , Organoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA