RESUMO
BACKGROUND: The majority of people with diabetes are susceptible to cardiac dysfunction and heart failure, and conventional drug therapy cannot correct diabetic cardiomyopathy progression. Herein, we assessed the potential role and therapeutic value of USP28 (ubiquitin-specific protease 28) on the metabolic vulnerability of diabetic cardiomyopathy. METHODS: The type 2 diabetes mouse model was established using db/db leptin receptor-deficient mice and high-fat diet/streptozotocin-induced mice. Cardiac-specific knockout of USP28 in the db/db background mice was generated by crossbreeding db/m and Myh6-Cre+/USP28fl/fl mice. Recombinant adeno-associated virus serotype 9 carrying USP28 under cardiac troponin T promoter was injected into db/db mice. High glucose plus palmitic acid-incubated neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes were used to imitate diabetic cardiomyopathy in vitro. The molecular mechanism was explored through RNA sequencing, immunoprecipitation and mass spectrometry analysis, protein pull-down, chromatin immunoprecipitation sequencing, and chromatin immunoprecipitation assay. RESULTS: Microarray profiling of the UPS (ubiquitin-proteasome system) on the basis of db/db mouse hearts and diabetic patients' hearts demonstrated that the diabetic ventricle presented a significant reduction in USP28 expression. Diabetic Myh6-Cre+/USP28fl/fl mice exhibited more severe progressive cardiac dysfunction, lipid accumulation, and mitochondrial disarrangement, compared with their controls. On the other hand, USP28 overexpression improved systolic and diastolic dysfunction and ameliorated cardiac hypertrophy and fibrosis in the diabetic heart. Adeno-associated virus serotype 9-USP28 diabetic mice also exhibited less lipid storage, reduced reactive oxygen species formation, and mitochondrial impairment in heart tissues than adeno-associated virus serotype 9-null diabetic mice. As a result, USP28 overexpression attenuated cardiac remodeling and dysfunction, lipid accumulation, and mitochondrial impairment in high-fat diet/streptozotocin-induced type 2 diabetes mice. These results were also confirmed in neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes. RNA sequencing, immunoprecipitation and mass spectrometry analysis, chromatin immunoprecipitation assays, chromatin immunoprecipitation sequencing, and protein pull-down assay mechanistically revealed that USP28 directly interacted with PPARα (peroxisome proliferator-activated receptor α), deubiquitinating and stabilizing PPARα (Lys152) to promote Mfn2 (mitofusin 2) transcription, thereby impeding mitochondrial morphofunctional defects. However, such cardioprotective benefits of USP28 were largely abrogated in db/db mice with PPARα deletion and conditional loss-of-function of Mfn2. CONCLUSIONS: Our findings provide a USP28-modulated mitochondria homeostasis mechanism that involves the PPARα-Mfn2 axis in diabetic hearts, suggesting that USP28 activation or adeno-associated virus therapy targeting USP28 represents a potential therapeutic strategy for diabetic cardiomyopathy.
Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Células-Tronco Pluripotentes Induzidas , Ubiquitina Tiolesterase , Animais , Humanos , Camundongos , Ratos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Lipídeos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , PPAR alfa/metabolismo , Estreptozocina/metabolismo , Estreptozocina/uso terapêutico , Ubiquitina Tiolesterase/análise , Ubiquitina Tiolesterase/metabolismoRESUMO
Solid polymer electrolytes can be used to construct solid-state lithium batteries (SSLBs) using lithium metals as the anode. However, the lifespan and safety problems of SSLBs caused by lithium dendrite growth have hindered their practical application. Here, we have designed and prepared a rigid-flexible asymmetric solid electrolyte (ASE) that is used in building SSLBs. The ASE can inhibit efficiently the growth of lithium dendrites and lead to a long cycle life of SSLBs due to the hierarchical structure of a combination of "polymer-in-ceramic" (i.e., rigid ceramic layer of Li6.4La3Zr1.4Ta0.6O12) and "LiBOB-in-polymer" (i.e., soft polymer-layer of polyethylene oxide and LiBOB components). The results demonstrated that a symmetrical battery with ASE (Li|ASE|Li) can be steadily cycled for more than 2000 h and yielded a flat plating/stripping voltage profile under a current density of 0.1 mA cm-2. As a consequence, the SSLB of LiFePO4|ASE|Li delivered a specific capacity of 155.1 mA h g-1 with a capacity retention rate up to 90.2% after 200 cycles with the Coulombic efficiency over 99.6% per cycle. This asymmetric structure combines the advantages of ceramics and polymers, providing an ingenious solution for building rigid and flexible solid electrolytes.
RESUMO
A continuous measurement was conducted in Yixing city urban area from 24th August to 15th September using TH-300B continuous online GC-MS instrument during G20 summit in Hangzhou, 2016. The VOCs average mass concentrations of alkane, alkene, aromatic, acetylene, haloalkane hydrocarbons, OVOC and acetonitrile were 11.00×10-9, 1.93×10-9, 5.78×10-9, 1.23×10-9, 4.16×10-9, 10.37×10-9, 0.27×10-9, respectively. The photochemical reaction activity was calculated by using the maximum potential coefficient of Ozone Formation Potential. Alkene and aromatic hydrocarbons were the most active components of OFP. By applying the positive matrix factorization(PMF)model, five major factors were extracted to identify the sources of NMHCs in Yixing city, including industry(42.2%),vehicle exhaust(17.9%), fuel evaporation(20.8%), paint/solvent usage(7.0%)and plant(12.1%). Combined with the conditional probability function(CPF) analysis, source of anthropogenic pollution was related to the distribution of industrial enterprises in the northwest and southeast, while the plant source was related to the forest hilly region of Southwest Yixing city. The effect of air pollutant emission reduction showed that the primary emission air pollutants had declined significantly during the strict control period from 1th to 6th September in G20 summit,2016, and the industry proportion was reduced to 30.5%, whereas the plant proportion increased to 16.8%.