Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 22(21): 7141-51, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27073032

RESUMO

Diffusion limitation in micropores of zeolites leads to a demand for optimization of zeolite morphology and/or porosity. However, tailoring crystallization processes to realize targeted morphology/porosity is a major challenge in zeolite synthesis. On the basis of previous work on the salt-aided, seed-induced route, the template effect of seeds on the formation of micropores, mesopores and even macropores was further explored to selectively achieve desired hierarchical architectures. By carefully investigating the crystallization processes of two typical samples with distinct crystal morphologies, namely, 1) nanocrystallite-oriented self-assembled ZSM-5 zeolite and 2) enriched intracrystal mesoporous ZSM-5 zeolite, a detailed mechanism is proposed to clarify the role of silicalite-1 seeds in the formation of diverse morphologies in a salt-rich heterogeneous system, combined with the transformation of seed-embedded aluminosilicate gel. On the basis of these conclusions, the morphologies/porosities of products were precisely tailored by deliberately adjusting the synthesis parameters (KF/Si, tetrapropylammonium bromide/Si and H2 O/Si ratios and type of organic template) to regulate the kinetics of seed dissolution and seed-induced recrystallization. This work may not only provide a practical route to control zeolite crystallization for tailoring crystal morphology, but also expands the knowledge of crystal growth mechanisms in a heterogeneous system.

2.
Chemistry ; 22(16): 5698-704, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-26934305

RESUMO

Metal-support interactions are desired to optimize the catalytic turnover on metals. Herein, the enhanced interactions by using a Mo2C nanowires support were utilized to modify the charge density of an Ir surface, accomplishing the selective hydrogenation of α,ß-unsaturated aldehydes on negatively charged Ir(δ-) species. The combined experimental and theoretical investigations showed that the Ir(δ-) species derive from the higher work function of Ir (vs. Mo2C) and the consequently electron transfer. In crotonaldehyde hydrogenation, Ir/Mo2C delivered a crotyl alcohol selectivity as high as 80%, outperforming those of counterparts (<30%) on silica. Moreover, such electronic metal-support interactions were also confirmed for Pt and Au, as compared with which, Ir/Mo2C was highlighted by its higher selectivity as well as the better activity. Additionally, the efficacy for various substrates further verified our Ir/Mo2C system to be competitive for chemoselective hydrogenation.

3.
J Colloid Interface Sci ; 608(Pt 2): 1366-1376, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34739995

RESUMO

HYPOTHESIS: It is a Holy Grail to realize the goal-oriented synthesis of zeotype crystals via direct thermodynamic/kinetic control of crystallization in the simplest inorganic system. Especially, the most commonly used counter cations (i.e., Na+ and K+) are in turn believed to play merely the role of balancing charges and stabilizing frameworks, which make the simple ion-based morphology/porosity control remain big challenges. EXPERIMENTS: We re-examined the role of Na+ and K+ to fine-tune the classical/nonclassical crystallization process in a seed-induced system with the simplest composition (Si/Al sources, inorganic alkali, and H2O), and proposed an "ion switch" strategy. By analyzing the multiple growth curves, tracking the precursor evolution, and observing epitaxial crystallization behavior, a distinctive "ion switch"-worked nonclassical mechanism was uncovered. FINDINGS: By the "ion switch" strategy, ZSM-5 mesocrystals were fine-regulated with diverse architecture from single crystal to nanocrystallite assembly and intracrystal mesopore-enriched crystal. Such simple ions-controlled crystallization was achieved through microstructure heterogeneity of zeolitic building-blocks triggered by different counterions and their corresponding assembly behavior from oriented attachment to random deposition. Furthermore, this protocol can be extended to a wider H2O/SiO2 range, mixed Na+/K+ systems, and other alkali metal ions from Li+ to Cs+, and ZSM-5 mesocrystals with extended morphologies can be obtained.

4.
Adv Mater ; 31(2): e1802880, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30133010

RESUMO

As the key of hydrogen economy, electrocatalytic hydrogen evolution reactions (HERs) depend on the availability of cost-efficient electrocatalysts. Over the past years, there is a rapid rise in noble-metal-free electrocatalysts. Among them, transition metal carbides (TMCs) are highlighted due to their structural and electronic merits, e.g., high conductivity, metallic band states, tunable surface/bulk architectures, etc. Herein, representative efforts and progress made on TMCs are comprehensively reviewed, focusing on the noble-metal-like electronic configuration and the relevant structural/electronic modulation. Briefly, specific nanostructures and carbon-based hybrids are introduced to increase active-site abundance and to promote mass transportation, and heteroatom doping and heterointerface engineering are encouraged to optimize the chemical configurations of active sites toward intrinsically boosted HER kinetics. Finally, a perspective on the future development of TMC electrocatalysts is offered. The overall aim is to shed some light on the exploration of emerging materials in energy chemistry.

5.
ACS Appl Mater Interfaces ; 10(49): 42475-42483, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30456945

RESUMO

In heterogeneous catalysis, strong metal-support interactions are highly desired to improve catalytic turnover on metal catalysts. Herein, molybdenum is uniformly incorporated into mesoporous silica (KIT-6) to accomplish strong interactions with iridium catalysts, and consequently, active and selective hydrogenation of carbonyl compounds. Mo-incorporated KIT-6 (Mo-KIT-6) affords electronic interactions to improve the proportion of metallic Ir0 species, avoiding the easy surface oxidation of ultrafine metals in silica mesocavities. Owing to the effective H2 activation and subsequent hydrogenation on metallic Ir0 sites, optimal Ir/Mo-KIT-6 with a high Ir0/Irδ+ ratio delivers prominent performance in the hydrogenation of amides to amines and α,ß-unsaturated aldehydes to unsaturated alcohols. As for N-acetylmorpholine hydrogenation, the Ir/Mo-KIT-6 catalyst achieves efficient turnover toward N-ethylmorpholine with high selectivity (>99%) and exhibits activity that relies on the engineered chemical state of Ir sites. Such promotion is further proved to be universal in cinnamaldehyde hydrogenation. This work will provide new opportunities for catalyst design through surface/interface engineering.

6.
ChemSusChem ; 10(12): 2597-2604, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28371425

RESUMO

Heterostructured electrocatalysts with multiple active components are expected to synchronously address the two elementary steps in the hydrogen evolution reaction (HER), which require varied hydrogen-binding strength on the catalyst surface. Herein, electrospinning followed by a pyrolysis is introduced to design Fe3 C-Mo2 C/nitrogen-doped carbon (Fe3 C-Mo2 C/NC) hetero-nanofibers (HNFs) with tunable composition, leading to abundant Fe3 C-Mo2 C hetero-interfaces for synergy in electrocatalysis. Owing to the strong hydrogen binding on Mo2 C and the relatively weak one on Fe3 C, the hetero-interfaces of Fe3 C-Mo2 C remarkably promote HER kinetics and intrinsic activity. Additionally, the loose and porous N-doped carbon matrix, as a result of Fe-catalyzed carbonization, ensures the fast transport of electrolytes and electrons, thus minimizing diffusion limitation. As expected, the optimized Fe3 C-Mo2 C/NC HNFs afforded a low overpotential of 116 mV at a current density of -10 mA cm-2 and striking kinetics metrics (onset overpotential: 42 mV, Tafel slope: 43 mV dec-1 ) in 0.5 m H2 SO4 , outperforming most recently reported noble-metal-free electrocatalysts.


Assuntos
Compostos Inorgânicos de Carbono/química , Carbono/química , Hidrogênio/química , Compostos de Ferro/química , Molibdênio/química , Nanofibras/química , Nanotecnologia/métodos , Nitrogênio/química , Catálise , Eletricidade , Eletroquímica , Porosidade
7.
Chem Sci ; 7(5): 3399-3405, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29997835

RESUMO

Exploring efficient noble-metal free electrocatalysts for the hydrogen evolution reaction (HER) is one of the most promising pathways for facing the energy crisis. Herein, MoC-Mo2C heteronanowires composed of well-defined nanoparticles were accomplished via controlled carbonization, showing excellent HER activity, fast kinetic metrics and outstanding stability in both acid and basic electrolytes. In particular, the optimal one consisting of 31.4 wt% MoC displayed a low overpotential (η10 = 126 and 120 mV for reaching a current density of -10 mA cm-2), a small Tafel slope (43 and 42 mV dec-1) and a low onset overpotential (38 and 33 mV) in 0.5 M H2SO4 and 1.0 M KOH, respectively. Such prominent performance, outperforming most of the current noble-metal free electrocatalysts, was ascribed to the carbide surface with an optimized electron density, and the consequently facilitated HER kinetics. This work elucidates a feasible way toward efficient electrocatalysts via heteronanostructure engineering, shedding some light on the exploration and optimization of catalysts in energy chemistry.

8.
ACS Appl Mater Interfaces ; 7(42): 23741-9, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26447801

RESUMO

The exposure of rich active sites is crucial for MoS2 nanocatalysts in efficient hydrogen evolution reaction (HER). However, the active (010) and (100) planes tend to vanish during preparation because of their high surface energy. Employing the protection by thiourea (TU) reactant, a microwave-assisted reactant-protecting strategy is successfully introduced to fabricate active-site-rich MoS2 (AS-rich MoS2). The bifunctionality of TU, as both a reactant and a capping agent, ensures rich interactions for the effective protection and easy exposure of active sites in MoS2, avoiding the complicated control and fussy procedure related to additional surfactants and templates. The as-obtained AS-rich MoS2 presents the superior HER activity characterized by its high current density (j = 68 mA cm(-2) at -300 mV vs RHE), low Tafel slope (53.5 mV dec(-1)) and low onset overpotential (180 mV), which stems from the rich catalytic sites and the promoted conductivity. This work elucidates a feasible way toward high performance catalysts via interface engineering, shedding some light on the development of emerging nanocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA