Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Harmful Algae ; 110: 102123, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34887003

RESUMO

The endoparasitic dinoflagellates belonging to the genus Amoebophrya can infect a broad range of free-living marine dinoflagellates, including harmful/toxic species. The parasite kills its host; the high prevalence of the parasite has been suggested to be a significant factor for the termination of dinoflagellate blooms in marine systems. The issues involved in culturing host-parasite systems have greatly restricted further research on Amoebophrya biology. Here, we established the culture of a novel strain of Amoebophrya sp. ex Alexandrium catenella (Group I) from Osaka Bay, Japan, and studied its genetic diversity, host specificity, and prevalence in the field. Genetic analysis established that the strain we isolated was a novel culture strain infecting A. catenella. Among the host species tested, the Amoebophrya sp. could infect the genera Alexandrium and Prorocentrum in culture, and the infection was also confirmed in the genus Tripos in a field sample. A maximum prevalence of 73% was recorded during the Alexandrium bloom period in Osaka Bay, after which the host cell density rapidly declined. Our results indicated that the existence of the parasite had a significant effect on the dynamics of A. catenella, especially on the termination of the blooms.


Assuntos
Dinoflagellida , Parasitos , Animais , Baías , Dinoflagellida/genética , Japão , Filogenia
2.
RSC Adv ; 8(39): 21768-21776, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35541740

RESUMO

Cellulose triacetate was synthesised by the transesterification reaction of mild acid-pretreated lignocellulosic biomass with a stable acetylating reagent (isopropenyl acetate, IPA) in an ionic liquid (1-ethyl-3-methylimidazolium acetate, EmimOAc) which enabled the dissolution of lignocellulose as well as the organocatalytic reaction. The homogeneous acetylation of pretreated sugar-cane bagasse was carried out under mild conditions (80 °C, 30 min), and the subsequent reprecipitation processes led to enriched cellulose triacetate with a high degree of substitution (DS; 2.98) and glucose purity (∼90%) along with production of lignin acetate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA