Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytopathology ; 114(1): 7-20, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37530477

RESUMO

Sugarcane (Saccharum hybrid) is an important cash crop grown in tropical and subtropical countries. Ratoon stunting disease (RSD), caused by a xylem-inhabiting bacterium, Leifsonia xyli subsp. xyli (Lxx) is one of the most economically significant diseases globally. RSD results in severe yield losses because its highly contagious nature and lack of visually identifiable symptoms make it harder to devise an effective management strategy. The efficacy of current management practices is hindered by implementation difficulties caused by lack of resources, high cost, and difficulties in monitoring. Rapid detection of the causal pathogen in vegetative planting material is crucial for sugarcane growers to manage this disease. Several microscopic, serological, and molecular-based methods have been developed and used for detecting the RSD pathogen. Although these methods have been used across the sugarcane industry worldwide to diagnose Lxx, some lack reliability or specificity, are expensive and time-consuming to apply, and most of all, are not suitable for on-farm diagnosis. In recent decades, there has been significant progress in the development of integrated isothermal amplification-based microdevices for accurate human and plant pathogen detection. There is a significant opportunity to develop a novel diagnostic method that integrates nanobiosensing with isothermal amplification within a microdevice format for accurate Lxx detection. In this review, we summarize (i) the historical background and current knowledge of sugarcane ratoon stunting disease, including some aspects related to transmission, pathosystem, and management practices; and (ii) the drawbacks of current diagnostic methods and the potential for application of advanced diagnostics to improve disease management.


Assuntos
Actinomycetales , Saccharum , Humanos , Saccharum/microbiologia , Reprodutibilidade dos Testes , Doenças das Plantas/microbiologia , Xilema/microbiologia
2.
Trends Biochem Sci ; 44(5): 433-452, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30686572

RESUMO

With revolutionary advances in next-generation sequencing, the human transcriptome has been comprehensively interrogated. These discoveries have highlighted the emerging functional and regulatory roles of a large fraction of RNAs suggesting the potential they might hold as stable and minimally invasive disease biomarkers. Although a plethora of molecular-biology- and biosensor-based RNA-detection strategies have been developed, clinical application of most of these is yet to be realized. Multifunctional nanomaterials coupled with sensitive and robust electrochemical readouts may prove useful in these applications. Here, we summarize the major contributions of engineered nanomaterials-based electrochemical biosensing strategies for the analysis of miRNAs. With special emphasis on nanostructure-based detection, this review also chronicles the needs and challenges of miRNA detection and provides a future perspective on the presented strategies.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , MicroRNAs/análise , Nanoestruturas/química , Humanos
3.
Small ; 19(15): e2205856, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36631277

RESUMO

Liquid biopsy for the analysis of circulating cancer biomarkers (CBs) is a major advancement toward the early detection of cancer. In comparison to tissue biopsy techniques, liquid biopsy is relatively painless, offering multiple sampling opportunities across easily accessible bodily fluids such as blood, urine, and saliva. Liquid biopsy is also relatively inexpensive and simple, avoiding the requirement for specialized laboratory equipment or trained medical staff. Major advances in the field of liquid biopsy are attributed largely to developments in nanotechnology and microfabrication that enables the creation of highly precise chip-based platforms. These devices can overcome detection limitations of an individual biomarker by detecting multiple markers simultaneously on the same chip, or by featuring integrated and combined target separation techniques. In this review, the major advances in the field of portable and semi-portable micro, nano, and multiplexed platforms for CB detection for the early diagnosis of cancer are highlighted. A comparative discussion is also provided, noting merits and drawbacks of the platforms, especially in terms of portability. Finally, key challenges toward device portability and possible solutions, as well as discussing the future direction of the field are highlighted.


Assuntos
Biomarcadores Tumorais , Neoplasias , Humanos , Nanomedicina , Biópsia Líquida/métodos , Neoplasias/diagnóstico , Nanotecnologia
4.
Analyst ; 147(16): 3732-3740, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35833583

RESUMO

Exosomes are vesicles released by healthy and cancer cells into the extracellular matrix and bodily fluid. Cancer cell-derived exosomes have attracted much attention in early-stage detection and prognostication of treatment response. Thus, detecting exosomes is of great interest to biology and medicine. However, many conventional detection methods require high-cost equipment and centralized laboratory facilities, making diagnostics inaccessible in limited-resource settings. This study reports a proof-of-concept low-cost electrochemical paper-based analytical device to quantify both the total bulk and cancer cell-derived exosomes in cell culture media. The device employs a sandwich immune assay design, where exosomes are initially captured using the electrode-bound generic antibodies (i.e. CD9) and subsequently detected via ovarian cancer-specific CA125 antibodies. Our proposed device quantifies the total bulk exosome concentration with a detection limit of 9.3 × 107 exosomes per mL and ovarian cancer cell-derived exosomes with a detection limit of 7.1 × 108 exosomes per mL, with a relative standard deviation of <10% (n = 3). We suggest that this low-cost and simple electrochemical paper-based device could be an alternative tool for detecting disease-specific exosomes in biological samples with the potential to be further developed for point-of-care diagnosis.


Assuntos
Exossomos , Neoplasias Ovarianas , Anticorpos , Eletrodos , Feminino , Humanos , Neoplasias Ovarianas/diagnóstico
5.
Analyst ; 146(12): 3731-3749, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-33988193

RESUMO

Exosomes are nano-sized extracellular vesicles that serve as a communications system between cells and have shown tremendous promise as liquid biopsy biomarkers in diagnostic, prognostic, and even therapeutic use in different human diseases. Due to the natural heterogeneity of exosomes, there is a need to separate exosomes into distinct biophysical and/or biochemical subpopulations to enable full interrogation of exosome biology and function prior to the possibility of clinical translation. Currently, there exists a multitude of different exosome isolation and characterization approaches which can, in limited capacity, separate exosomes based on biophysical and/or biochemical characteristics. While notable reviews in recent years have reviewed these approaches for bulk exosome sorting, we herein present a comprehensive overview of various conventional technologies and modern microfluidic and nanotechnological advancements towards isolation and characterization of exosome subpopulations. The benefits and limitations of these different technologies to improve their use for distinct exosome subpopulations in clinical practices are also discussed. Furthermore, an overview of the most commonly encountered technical and biological challenges for effective separation of exosome subpopulations is presented.


Assuntos
Exossomos , Biomarcadores , Humanos , Biópsia Líquida , Microfluídica
6.
Analyst ; 146(18): 5496-5501, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34346412

RESUMO

We present a novel amplification-free sandwich type platform assay for electrochemical detection of miRNA. The assay is based on T4 DNA polymerase mediated synthesis of the p53 binding DNA sequence at the 3' end of target miRNA. The resulting miRNA-DNA chimera is detected via an electrochemical sandwich hybridization assay where HRP-labelled p53 binds to its recognition sequence and an amperometric signal is generated by hydroquinone-mediated enzymatic reduction of H2O2. The limit of detection of our assay was estimated to be 22 fM with a linear dynamic range of 100 fM-1 nM. This new platform method of detecting miRNA shows superior performance to conventional electrochemical miRNA biosensors and has the potential for amplification-free analysis of miRNA with high specificity and sensitivity.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Proteínas de Ligação a DNA , Técnicas Eletroquímicas , Peróxido de Hidrogênio , Limite de Detecção , MicroRNAs/genética , Hibridização de Ácido Nucleico
7.
Analyst ; 146(11): 3654-3665, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33949437

RESUMO

The quantification of global 5-methylcytosine (5mC) content has emerged as a promising approach for the diagnosis and prognosis of cancers. However, conventional methods for the global 5mC analysis require large quantities of DNA and may not be useful for liquid biopsy applications, where the amount of DNA available is limited. Herein, we report magnetic nanoparticles-assisted methylated DNA immunoprecipitation (e-MagnetoMethyl IP) coupled with electrochemical quantification of global DNA methylation. Carboxyl (-COOH) group-functionalized iron oxide nanoparticles (C-IONPs) synthesized by a novel starch-assisted gel formation method were conjugated with anti-5mC antibodies through EDC/NHS coupling (anti-5mC/C-IONPs). Anti-5mC/C-IONPs were subsequently mixed with DNA samples, in which they acted as dispersible capture agents to selectively bind 5mC residues and capture the methylated fraction of genomic DNA. The target-bound Anti-5mC/C-IONPs were magnetically separated and directly adsorbed onto the gold electrode surface using gold-DNA affinity interaction. The amount of DNA adsorbed on the electrode surface, which corresponds to the DNA methylation level in the sample, was electrochemically estimated by differential pulse voltammetric (DPV) study of an electroactive indicator [Ru(NH3)6]3+ bound to the surface-adsorbed DNA. Using a 200 ng DNA sample, the assay could successfully detect differences as low as 5% in global DNA methylation levels with high reproducibility (relative standard deviation (% RSD) = <5% for n = 3). The method could also reproducibly analyze various levels of global DNA methylation in synthetic samples as well as in cell lines. The method avoids bisulfite treatment, does not rely on enzymes for signal generation, and can detect global DNA methylation using clinically relevant quantities of sample DNA without PCR amplification. We believe that this proof-of-concept method could potentially find applications for liquid biopsy-based global DNA methylation analysis in point-of-care settings.


Assuntos
Metilação de DNA , Nanopartículas de Magnetita , Técnicas Eletroquímicas , Imunoprecipitação , Reprodutibilidade dos Testes
8.
Clin Sci (Lond) ; 134(6): 593-607, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32129439

RESUMO

Small extracellular vesicles (sEVs) released from the extravillous trophoblast (EVT) are known to regulate uterine spiral artery remodeling during early pregnancy. The bioactivity and release of these sEVs differ under differing oxygen tensions and in aberrant pregnancy conditions. Whether the placental cell-derived sEVs released from the hypoxic placenta contribute to the pathophysiology of preeclampsia is not known. We hypothesize that, in response to low oxygen tension, the EVT packages a specific set of proteins in sEVs and that these released sEVs interact with endothelial cells to induce inflammation and increase maternal systemic blood pressure. Using a quantitative MS/MS approach, we identified 507 differentially abundant proteins within sEVs isolated from HTR-8/SVneo cells (a commonly used EVT model) cultured at 1% (hypoxia) compared with 8% (normoxia) oxygen. Among these differentially abundant proteins, 206 were up-regulated and 301 were down-regulated (P < 0.05), and they were mainly implicated in inflammation-related pathways. In vitro incubation of hypoxic sEVs with endothelial cells, significantly increased (P < 0.05) the release of GM-CSF, IL-6, IL-8, and VEGF, when compared with control (i.e. cells without sEVs) and normoxic sEVs. In vivo injection of hypoxic sEVs into pregnant rats significantly increased (P < 0.05) mean arterial pressure with increases in systolic and diastolic blood pressures. We propose that oxygen tension regulates the release and bioactivity of sEVs from EVT and that these sEVs regulate inflammation and maternal systemic blood pressure. This novel oxygen-responsive, sEVs signaling pathway, therefore, may contribute to the physiopathology of preeclampsia.


Assuntos
Citocinas/metabolismo , Vesículas Extracelulares/química , Hipóxia/fisiopatologia , Oxigênio/metabolismo , Pré-Eclâmpsia/fisiopatologia , Animais , Pressão Arterial , Pressão Sanguínea , Citocinas/genética , Células Endoteliais/química , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Oxigênio/análise , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Trofoblastos/química , Trofoblastos/metabolismo
9.
Chem Rec ; 20(3): 174-186, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31298485

RESUMO

Metal nanoprobes have recently attracted board research interestinr their application in establishing sensing systems due to their unique optical, electrical, physical, and chemical properties. In comparison to gold and silver nanoprobes, analytical platform based on copper nanoprobes (Cu-NPs) is still in the early stages of development. In this review, we focus on single-stranded, and double-stranded DNA capped Cu-NPs sensing systems which have been designed for various analytes, including metal ions, anions, small molecules, biomolecules (DNA, RNA, and protein, etc.). In addition, the application of Cu-NPs in biological labeling or bio-imaging platforms has also been introduced and summarized.


Assuntos
Técnicas Biossensoriais , Cobre/química , DNA/química , Nanopartículas Metálicas/química , DNA/análise , Metais/análise , Proteínas/análise , RNA/análise
10.
Analyst ; 145(23): 7680-7686, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-32975254

RESUMO

This work reports the development of a rapid, simple and inexpensive colorimetric paper-based assay for the detection of the severe acute respiratory symptom coronavirus 2 (SARS-CoV-2) humanized antibody. The paper device was prepared with lamination for easy sample handling and coated with the recombinant SARS-CoV-2 nucleocapsid antigen. This assay employed a colorimetric reaction, which is followed by horseradish peroxidase (HRP) conjugated detecting antibody in the presence of the 3,3',5,5'-tetramethylbenzidine (TMB) substrate. The colorimetric readout was evaluated and quantified for specificity and sensitivity. The characterization of this assay includes determining the linear regression curve, the limit of detection (LOD), the repeatability, and testing complex biological samples. We found that the LOD of the assay was 9.00 ng µL-1 (0.112 IU mL-1). The relative standard deviation was approximately 10% for a sample number of n = 3. We believe that our proof-of-concept assay has the potential to be developed for clinical screening of the SARS-CoV-2 humanized antibody as a tool to confirm infected active cases or to confirm SARS-CoV-2 immune cases during the process of vaccine development.


Assuntos
Anticorpos Monoclonais Humanizados/sangue , Anticorpos Antivirais/sangue , Teste para COVID-19/métodos , Colorimetria/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Papel , SARS-CoV-2/imunologia , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Antivirais/imunologia , Armoracia/enzimologia , Benzidinas/química , COVID-19/diagnóstico , Teste para COVID-19/instrumentação , Colorimetria/instrumentação , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Ensaio de Imunoadsorção Enzimática/instrumentação , Peroxidase do Rábano Silvestre/química , Humanos , Limite de Detecção , Fosfoproteínas/imunologia , Estudo de Prova de Conceito , SARS-CoV-2/química
11.
Analyst ; 145(13): 4398-4420, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32436931

RESUMO

In recent years, a new group of nanomaterials named nanozymes that exhibit enzyme-mimicking catalytic activity has emerged as a promising alternative to natural enzymes. Nanozymes can address some of the intrinsic limitations of natural enzymes such as high cost, low stability, difficulty in storage, and specific working conditions (i.e., narrow substrate, temperature and pH ranges). Thus, synthesis and applications of hybrid and stimuli-responsive advanced nanozymes could revolutionize the current practice in life sciences and biosensor applications. On the other hand, electrochemical biosensors have long been used as an efficient way for quantitative detection of analytes (biomarkers) of interest. As such, the use of nanozymes in electrochemical biosensors is particularly important to achieve low cost and stable biosensors for prognostics, diagnostics, and therapeutic monitoring of diseases. Herein, we summarize the recent advances in the synthesis and classification of common nanozymes and their application in electrochemical biosensor development. After briefly overviewing the applications of nanozymes in non-electrochemical-based biomolecular sensing systems, we thoroughly discuss the state-of-the-art advances in nanozyme-based electrochemical biosensors, including genosensors, immunosensors, cytosensors and aptasensors. The applications of nanozymes in microfluidic-based assays are also discussed separately. We also highlight the challenges of nanozyme-based electrochemical biosensors and provide some possible strategies to address these limitations. Finally, future perspectives on the development of nanozyme-based electrochemical biosensors for disease biomarker detection are presented. We envisage that standardization of nanozymes and their fabrication process may bring a paradigm shift in biomolecular sensing by fabricating highly specific, multi-enzyme mimicking nanozymes for highly sensitive, selective, and low-biofouling electrochemical biosensors.


Assuntos
Biomarcadores/análise , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , Catálise , Linhagem Celular Tumoral , Humanos , Técnicas Analíticas Microfluídicas/métodos
12.
Analyst ; 145(6): 2038-2057, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32016203

RESUMO

Ovarian cancer is the most aggressive of all gynaecological malignancies and is the leading cause of cancer-associated mortality worldwide. Over the recent years, there has been a sharp increase in this mortality rate, mostly due to late diagnosis, which can be attributed to the lack of an early and specific biomarker. Under this scenario, recent interest has shifted towards ovarian cancer associated miRNAs which play strong regulatory roles in various cellular processes. miRNAs have emerged as promising non/minimally invasive cancer biomarkers for improved diagnostic, prognostic and streamlined therapeutic applications. A large number of miRNA assays have been reported that are based on nucleic acid detection-based techniques such as RT-qPCR, microarrays and RNA sequencing methods. Despite demonstrating commendable analytical performances, these laboratory-based techniques are expensive and hence not ideally suited for routine use in resource-limited settings. In recent years, considerable attention has been dedicated to the development of relatively simple, rapid and inexpensive miRNA biosensor strategies. Among these, electrochemical sensors have shown a great promise towards point-of-care diagnostics, due to their inherent advantages such as simplicity, sensitivity, amenability to high levels of multiplexing as well as low cost. In this paper, we provide an overview of the potential role of miRNAs in ovarian cancer, as well as recent advances in the development of nanotechnology-based, optical, and electrochemical biosensing-strategies for miRNA detection.


Assuntos
Técnicas Biossensoriais/métodos , MicroRNAs/genética , Neoplasias Ovarianas/genética , Animais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Feminino , Transferência Ressonante de Energia de Fluorescência/instrumentação , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , MicroRNAs/análise , Nanotecnologia , Neoplasias Ovarianas/diagnóstico , Análise Espectral Raman/instrumentação , Análise Espectral Raman/métodos
13.
Nanomedicine ; 28: 102207, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32334098

RESUMO

Carboplatin, administered as a single drug or in combination with paclitaxel, is the standard chemotherapy treatment for patients with ovarian cancer (OVCA). Recent evidence suggests that miRNAs associated with small extracellular vesicles (sEVs) participate in the development of chemoresistance. We studied the effect of carboplatin in a heterogeneity population of OVCA cells and their derived sEVs to identify mechanisms associated with chemoresistance. sEVs were quantified using an engineered superparamagnetic material, gold-loaded ferric oxide nanotubes and a screen-printed electrode. miR-21-3p, miR-21-5p, and miR-891-5p are enriched in sEVs, and they contribute to carboplatin resistance in OVCA. Using a quantitative MS/MS, miR-21-5p activates glycolysis and increases the expression of ATP-binding cassette family and a detoxification enzyme. miR-21-3p and miR-891-5p increase the expression of proteins involved in DNA repair mechanisms. Interestingly, the levels of miR-891-5p within sEVs are significantly higher in patients at risk of ovarian cancer relapse. Identification of miRNAs in sEVs also provides the opportunity to track them in biological fluids to potentially determine patient response to chemotherapy.


Assuntos
Biomarcadores/metabolismo , MicroRNAs/genética , Neoplasias Ovarianas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , MicroRNAs/metabolismo , Platina/uso terapêutico
14.
Chem Soc Rev ; 48(24): 5717-5751, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31720618

RESUMO

The detection of clinically relevant disease-specific biomolecules, including nucleic acids, circulating tumor cells, proteins, antibodies, and extracellular vesicles, has been indispensable to understand their functions in disease diagnosis and prognosis. Therefore, a biosensor for the robust, ultrasensitive, and selective detection of these low-abundant biomolecules in body fluids (blood, urine, and saliva) is emerging in current clinical research. In recent years, nanomaterials, especially superparamagnetic nanomaterials, have played essential roles in biosensing due to their intrinsic magnetic, electrochemical, and optical properties. However, engineered multicomponent magnetic nanoparticle-based current biosensors that offer the advantages of excellent stability in a complex biomatrix; easy and alterable biorecognition of ligands, antibodies, and receptor molecules; and unified point-of-care integration have yet to be achieved. This review introduces the recent advances in superparamagnetic nanostructures for electrochemical and optical biosensing for disease-specific biomarkers. This review emphasizes the synthesis, biofunctionalization, and intrinsic properties of nanomaterials essential for robust, ultrasensitive biosensing. With a particular emphasis on nanostructure-based electrochemical and optical detection of disease-specific biomarkers such as nucleic acids (DNA and RNA), proteins, autoantibodies, and cells, this review also chronicles the needs and challenges of nanoarchitecture-based detection. These summaries provide further insights for researchers to inspire their future work on the development of nanostructures for integrating into biosensing and devices for a broad field of applications in analytical sensing and in clinic.


Assuntos
Técnicas Biossensoriais/métodos , Nanopartículas de Magnetita/química , Animais , Anticorpos/análise , Biomarcadores/análise , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Humanos , Nanopartículas de Magnetita/ultraestrutura , Nanotecnologia/métodos , Ácidos Nucleicos/análise , Proteínas/análise
15.
Anal Chem ; 91(6): 3827-3834, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30735354

RESUMO

Most of the current exosome-analysis strategies are time-consuming and largely dependent on commercial extraction kit-based preisolation step, which requires extensive sample manipulations, costly isolation kits, reagents, tedious procedures, and sophisticated equipment and is prone to bias/artifacts. Herein we introduce a simple method for direct isolation and subsequent detection of a specific population of exosomes using an engineered superparamagnetic material with multifunctional properties, namely, gold-loaded ferric oxide nanocubes (Au-NPFe2O3NC). In this method, the Au-NPFe2O3NC were initially functionalized with a generic tetraspanin (exosomes-associated) antibody (i.e., CD63) and dispersed in sample fluids where they work as "dispersible nanocarriers" to capture the bulk population of exosomes. After magnetic collection and purification, Au-NPFe2O3NC-bound exosomes were transferred to the tissue-specific, antibody-modified, screen-printed electrode. As a proof of principle, we used a specific placental marker, placenta alkaline phosphatase (PLAP), to detect exosomes secreted from placental cells. The peroxidase-like activity of Au-NPFe2O3NC was then used to accomplish an enzyme-linked immunosorbent assay (ELISA)-based sensing protocol for naked-eye observation along with UV-visible and electrochemical detection of PLAP-specific exosomes present in placental cell-conditioned media. We demonstrated excellent agreement in analytical performance for the detection of placental cell-derived exosomes (i.e., linear dynamic range, 103-107 exosomes/mL; limit of detection, 103 exosomes/mL; relative standard deviation (%RSD) of <5.5% for n = 3) using with and without commercial "total exosome isolation kit"-based preisolation step. We envisage that this highly sensitive, rapid, and inexpensive assay could be useful in quantifying specific populations of exosomes for various clinical applications, focusing on pregnancy complications.


Assuntos
Fosfatase Alcalina/metabolismo , Técnicas Biossensoriais/métodos , Exossomos/metabolismo , Compostos Férricos/química , Ouro/química , Limite de Detecção , Nanoporos , Linhagem Celular Tumoral , Feminino , Humanos , Placenta/enzimologia , Gravidez
16.
Small ; 14(6)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29282861

RESUMO

Exosomes are nanoscale (≈30-150 nm) extracellular vesicles of endocytic origin that are shed by most types of cells and circulate in bodily fluids. Exosomes carry a specific composition of proteins, lipids, RNA, and DNA and can work as cargo to transfer this information to recipient cells. Recent studies on exosomes have shown that they play an important role in various biological processes, such as intercellular signaling, coagulation, inflammation, and cellular homeostasis. These functional roles are attributed to their ability to transfer RNA, proteins, enzymes, and lipids, thereby affecting the physiological and pathological conditions in various diseases, including cancer and neurodegenerative, infectious, and autoimmune diseases (e.g., cancer initiation, progression, and metastasis). Due to these unique characteristics, exosomes are considered promising biomarkers for the diagnosis and prognosis of various diseases via noninvasive or minimally invasive procedures. Over the last decade, a plethora of methodologies have been developed for analyzing disease-specific exosomes using optical and nonoptical tools. Here, the major biological functions, significance, and potential role of exosomes as biomarkers and therapeutics are discussed. Furthermore, an overview of the most commonly used techniques for exosome analysis, highlighting the major technical challenges and limitations of existing techniques, is presented.

17.
Analyst ; 143(20): 4802-4818, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30226502

RESUMO

DNA methylation is one of the significant epigenetic modifications involved in mammalian development as well as in the initiation and progression of various diseases like cancer. Over the past few decades, an enormous amount of research has been carried out for the quantification of DNA methylation in the mammalian genome. Earlier, most of these methodologies used bisulfite treatment. However, the low conversion, false reading, longer assay time and complex chemical reaction are the common limitations of this method that hinder their application in routine clinical screening. Thus, as an alternative to bisulfite conversion-based DNA methylation detection, numerous bisulfite-free methods have been proposed. In this regard, electrochemical biosensors have gained much attention in recent years for being highly sensitive yet cost-effective, portable, and simple to operate. On the other hand, biosensors with optical readouts enable direct real time detection of biological molecules and are easily adaptable to multiplexing. Incorporation of electrochemical and optical readouts into bisulfite free DNA methylation analysis is paving the way for the translation of this important biomarker into standard patient care. In this review, we provide a critical overview of recent advances in the development of electrochemical and optical readout based bisulfite free DNA methylation assays.


Assuntos
Metilação de DNA , DNA/química , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Análise de Sequência de DNA/métodos , Técnicas Biossensoriais/métodos , Colorimetria/métodos , Humanos , Sulfitos/química
18.
Analyst ; 143(7): 1662-1669, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-29512659

RESUMO

Recent evidence suggests that small non-coding RNAs such as microRNA (miRNA) encapsulated in exosomes represent an important mechanism of communication between the cells. Exosomal miRNAs play an important role in carcinogenesis via enhancing the cell to cell communication and targeting the cell growth molecular pathways which in turn facilitate metastasis in cancers. Despite progressive advances, the current methods for the exosomal miRNA detection mostly rely on labor-intensive sequencing approaches which are often prone to amplification bias and require costly and bulky equipment. Herein, we report an electrochemical approach for the detection of cancer-derived exosomal miRNAs in human serum samples by selectively isolating the target miRNA using magnetic beads pre-functionalized with capture probes and then directly adsorbing the targets onto a gold electrode surface. The level of adsorbed miRNA is detected electrochemically in the presence of an [Fe(CN)6]4-/3- redox system. This method enabled an excellent detection sensitivity of 1.0 pM with a relative standard deviation (%RSD) of <5.5% in cancer cells and serum samples (n = 8) collected from patients with colorectal adenocarcinoma (CRC). We believe that our approach could be useful in clinical settings for the quantification of exosomal miRNA in cancer patients.


Assuntos
Adenocarcinoma/sangue , Técnicas Eletroquímicas , Exossomos/genética , MicroRNAs/sangue , Eletrodos , Ouro , Humanos
19.
Analyst ; 144(1): 342-348, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30398492

RESUMO

This study proposes the construction of nanoporous poly-melamine-formaldehyde (PMF) through the Schiff base condensation reaction of paraformaldehyde and melamine. The PMF nanoparticles showed a good adsorption capability to some benzene-ring-containing dyes including acid fuchsine, nigrosine, and methyl orange. Moreover, the as-prepared PMF nanoparticles were employed as the coating adsorbent for the solid-phase microextraction (SPME) of seven volatile fatty acids (VFAs) with high enrichment factors. A PMF-assisted SPME method was established for the enrichment of VFAs from environmental water samples with satisfactory recoveries (88.5%-102.0%) and acceptable precisions (relative standard deviations <10.9%). This contribution might furnish an advanced benchmark for the exploitation of new porous organic polymers as the effective adsorbents for SPME or other fields of utilization.

20.
Analyst ; 143(13): 3021-3028, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29667992

RESUMO

An inexpensive, simple and rapid sensor platform capable of detecting cancer-related long non-coding RNA (lncRNA) with high accuracy is of great interest in the field of molecular diagnostics. Herein, we report on the development of a new colorimetric and electrochemical assay platform for long non-coding HOX transcript antisense intergenic RNA (HOTAIR) detection. Isothermal reverse transcription-recombinase polymerase amplification (RT-RPA) was performed to amplify HOTAIR sequences from a RNA pool extracted from a designated number of ovarian cancer cells and a small cohort of plasma samples derived from patients with ovarian cancer. During RT-RPA, biotinylated dUTPs were randomly incorporated in the amplified product. Subsequently, HOTAIR amplicons were magnetically purified and isolated followed by a horseradish peroxidase (HRP)-catalyzed colorimetric reaction in the presence of the 3,3',5,5'-tetramethylbenzidine (TMB)/H2O2 system. We finally introduced three potential readout methods for HOTAIR detection - (i) naked-eye visualisation of the color change for a quick screening of the target, (ii) quantitative absorbance measurement by UV-vis, and (iii) amperometric quantification using the electrochemical properties of TMB. The assay has shown excellent reproducibility (% RSD = <5%, for n = 3) and sensitivity (10 cells/ per mL) while detecting HOTAIR in cancer cell lines and patient samples. The expression of HOTAIR in clinical samples was also verified with a standard RT-qPCR method. We believe that our proof of concept assay may find potential relevance for the routine clinical screening of cancer-associated lncRNAs.


Assuntos
Técnicas Eletroquímicas , Neoplasias Ovarianas/genética , RNA Longo não Codificante/análise , Feminino , Humanos , Peróxido de Hidrogênio , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA