Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 15(10): e1008048, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31600347

RESUMO

Kinesin-8 proteins are microtubule motors that are often involved in regulation of mitotic spindle length and chromosome alignment. They move towards the plus ends of spindle microtubules and regulate the dynamics of these ends due, at least in some species, to their microtubule depolymerization activity. Plasmodium spp. exhibit an atypical endomitotic cell division in which chromosome condensation and spindle dynamics in the different proliferative stages are not well understood. Genome-wide shared orthology analysis of Plasmodium spp. revealed the presence of two kinesin-8 motor proteins, kinesin-8X and kinesin-8B. Here we studied the biochemical properties of kinesin-8X and its role in parasite proliferation. In vitro, kinesin-8X has motility and depolymerization activities like other kinesin-8 motors. To understand the role of Plasmodium kinesin-8X in cell division, we used fluorescence-tagging and live cell imaging to define its location, and gene targeting to analyse its function, during all proliferative stages of the rodent malaria parasite P. berghei life cycle. The results revealed a spatio-temporal involvement of kinesin-8X in spindle dynamics and an association with both mitotic and meiotic spindles and the putative microtubule organising centre (MTOC). Deletion of the kinesin-8X gene revealed a defect in oocyst development, confirmed by ultrastructural studies, suggesting that this protein is required for oocyst development and sporogony. Transcriptome analysis of Δkinesin-8X gametocytes revealed modulated expression of genes involved mainly in microtubule-based processes, chromosome organisation and the regulation of gene expression, supporting a role for kinesin-8X in cell division. Kinesin-8X is thus required for parasite proliferation within the mosquito and for transmission to the vertebrate host.


Assuntos
Cinesinas/metabolismo , Malária/parasitologia , Malária/transmissão , Oocistos/citologia , Plasmodium/fisiologia , Proteínas de Protozoários/metabolismo , Fuso Acromático/fisiologia , Animais , Segregação de Cromossomos , Feminino , Cinesinas/genética , Masculino , Camundongos Endogâmicos BALB C , Microtúbulos/metabolismo , Mitose , Oocistos/fisiologia , Proteínas de Protozoários/genética
2.
J Med Chem ; 67(7): 5538-5566, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38513086

RESUMO

Unlocking novel E3 ligases for use in heterobifunctional PROTAC degraders is of high importance to the pharmaceutical industry. Over-reliance on the current suite of ligands used to recruit E3 ligases could limit the potential of their application. To address this, potent ligands for DCAF15 were optimized using cryo-EM supported, structure-based design to improve on micromolar starting points. A potent binder, compound 24, was identified and subsequently conjugated into PROTACs against multiple targets. Following attempts on degrading a number of proteins using DCAF15 recruiting PROTACs, only degradation of BRD4 was observed. Deconvolution of the mechanism of action showed that this degradation was not mediated by DCAF15, thereby highlighting both the challenges faced when trying to expand the toolbox of validated E3 ligase ligands for use in PROTAC degraders and the pitfalls of using BRD4 as a model substrate.


Assuntos
Proteínas Nucleares , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Nucleares/metabolismo , Proteólise , Fatores de Transcrição/metabolismo , Ligantes
3.
Nat Commun ; 13(1): 6988, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384964

RESUMO

Plasmodium species cause malaria and kill hundreds of thousands annually. The microtubule-based motor kinesin-8B is required for development of the flagellated Plasmodium male gamete, and its absence completely blocks parasite transmission. To understand the molecular basis of kinesin-8B's essential role, we characterised the in vitro properties of kinesin-8B motor domains from P. berghei and P. falciparum. Both motors drive ATP-dependent microtubule gliding, but also catalyse ATP-dependent microtubule depolymerisation. We determined these motors' microtubule-bound structures using cryo-electron microscopy, which showed very similar modes of microtubule interaction in which Plasmodium-distinct sequences at the microtubule-kinesin interface influence motor function. Intriguingly however, P. berghei kinesin-8B exhibits a non-canonical structural response to ATP analogue binding such that neck linker docking is not induced. Nevertheless, the neck linker region is required for motility and depolymerisation activities of these motors. These data suggest that the mechanochemistry of Plasmodium kinesin-8Bs is functionally tuned to support flagella formation.


Assuntos
Malária , Parasitos , Plasmodium , Masculino , Animais , Cinesinas , Parasitos/metabolismo , Microscopia Crioeletrônica , Ligação Proteica/fisiologia , Plasmodium/metabolismo , Trifosfato de Adenosina/metabolismo
4.
SLAS Discov ; 26(1): 17-31, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33016175

RESUMO

Single-particle cryogenic electron microscopy (cryo-EM) has been elevated to the mainstream of structural biology propelled by technological advancements in numerous fronts, including imaging analysis and the development of direct electron detectors. The drug discovery field has watched with (initial) skepticism and wonder at the progression of the technique and how it revolutionized the molecular understanding of previously intractable targets. This article critically assesses how cryo-EM has impacted drug discovery in diverse therapeutic areas. Targets that have been brought into the realm of structure-based drug design by cryo-EM and are thus reviewed here include membrane proteins like the GABAA receptor, several TRP channels, and G protein-coupled receptors, and multiprotein complexes like the ribosomes, the proteasome, and eIF2B. We will describe these studies highlighting the achievements, challenges, and caveats.


Assuntos
Microscopia Crioeletrônica/métodos , Descoberta de Drogas/métodos , Animais , Humanos , Relação Estrutura-Atividade
5.
EMBO Mol Med ; 13(11): e13818, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34661376

RESUMO

Infectious diseases caused by apicomplexan parasites remain a global public health threat. The presence of multiple ligand-binding sites in tubulin makes this protein an attractive target for anti-parasite drug discovery. However, despite remarkable successes as anti-cancer agents, the rational development of protozoan parasite-specific tubulin drugs has been hindered by a lack of structural and biochemical information on protozoan tubulins. Here, we present atomic structures for a protozoan tubulin and microtubule and delineate the architectures of apicomplexan tubulin drug-binding sites. Based on this information, we rationally designed the parasite-specific tubulin inhibitor parabulin and show that it inhibits growth of parasites while displaying no effects on human cells. Our work presents for the first time the rational design of a species-specific tubulin drug providing a framework to exploit structural differences between human and protozoa tubulin variants enabling the development of much-needed, novel parasite inhibitors.


Assuntos
Antiparasitários , Parasitos , Animais , Antiparasitários/farmacologia , Sítios de Ligação , Proliferação de Células , Humanos , Microtúbulos/metabolismo , Parasitos/metabolismo , Tubulina (Proteína) , Moduladores de Tubulina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA