Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Annu Rev Pharmacol Toxicol ; 60: 219-240, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31337271

RESUMO

The three small-conductance calcium-activated potassium (KCa2) channels and the related intermediate-conductance KCa3.1 channel are voltage-independent K+ channels that mediate calcium-induced membrane hyperpolarization. When intracellular calcium increases in the channel vicinity, it calcifies the flexible N lobe of the channel-bound calmodulin, which then swings over to the S4-S5 linker and opens the channel. KCa2 and KCa3.1 channels are highly druggable and offer multiple binding sites for venom peptides and small-molecule blockers as well as for positive- and negative-gating modulators. In this review, we briefly summarize the physiological role of KCa channels and then discuss the pharmacophores and the mechanism of action of the most commonly used peptidic and small-molecule KCa2 and KCa3.1 modulators. Finally, we describe the progress that has been made in advancing KCa3.1 blockers and KCa2.2 negative- and positive-gating modulators toward the clinic for neurological and cardiovascular diseases and discuss the remaining challenges.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Intermediária/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/efeitos dos fármacos , Animais , Sítios de Ligação , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/fisiopatologia , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/fisiopatologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
2.
Am J Physiol Cell Physiol ; 323(3): C694-C705, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35848620

RESUMO

Red cell volume is a major determinant of HbS concentration in sickle cell disease. Cellular deoxy-HbS concentration determines the delay time, the interval between HbS deoxygenation and deoxy-HbS polymerization. Major membrane transporter protein determinants of sickle red cell volume include the SLC12/KCC K-Cl cotransporters KCC3/SLC12A6 and KCC1/SLC12A4, and the KCNN4/KCa3.1 Ca2+-activated K+ channel (Gardos channel). Among standard inhibitors of KCC-mediated K-Cl cotransport, only [(dihydroindenyl)oxy]acetic acid (DIOA) has been reported to lack inhibitory activity against the related bumetanide-sensitive erythroid Na-K-2Cl cotransporter NKCC1/SLC12A2. DIOA has been often used to inhibit K-Cl cotransport when studying the expression and regulation of other K+ transporters and K+ channels. We report here that DIOA at concentrations routinely used to inhibit K-Cl cotransport can also abrogate activity of the KCNN4/KCa3.1 Gardos channel in human and mouse red cells and in human sickle red cells. DIOA inhibition of A23187-stimulated erythroid K+ uptake (Gardos channel activity) was chloride-independent and persisted in mouse red cells genetically devoid of the principal K-Cl cotransporters KCC3 and KCC1. DIOA also inhibited YODA1-stimulated, chloride-independent erythroid K+ uptake. In contrast, DIOA exhibited no inhibitory effect on K+ influx into A23187-treated red cells of Kcnn4-/- mice. DIOA inhibition of human KCa3.1 was validated (IC50 42 µM) by whole cell patch clamp in HEK-293 cells. RosettaLigand docking experiments identified a potential binding site for DIOA in the fenestration region of human KCa3.1. We conclude that DIOA at concentrations routinely used to inhibit K-Cl cotransport can also block the KCNN4/KCa3.1 Gardos channel in normal and sickle red cells.


Assuntos
Anemia Falciforme , Simportadores , Ácido Acético , Anemia Falciforme/tratamento farmacológico , Animais , Calcimicina , Cloretos/metabolismo , Células HEK293 , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Camundongos , Potássio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto , Simportadores/metabolismo
3.
J Chem Inf Model ; 62(10): 2301-2315, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35447030

RESUMO

The identification of promising lead compounds showing pharmacological activities toward a biological target is essential in early stage drug discovery. With the recent increase in available small-molecule databases, virtual high-throughput screening using physics-based molecular docking has emerged as an essential tool in assisting fast and cost-efficient lead discovery and optimization. However, the best scored docking poses are often suboptimal, resulting in incorrect screening and chemical property calculation. We address the pose classification problem by leveraging data-driven machine learning approaches to identify correct docking poses from AutoDock Vina and Glide screens. To enable effective classification of docking poses, we present two convolutional neural network approaches: a three-dimensional convolutional neural network (3D-CNN) and an attention-based point cloud network (PCN) trained on the PDBbind refined set. We demonstrate the effectiveness of our proposed classifiers on multiple evaluation data sets including the standard PDBbind CASF-2016 benchmark data set and various compound libraries with structurally different protein targets including an ion channel data set extracted from Protein Data Bank (PDB) and an in-house KCa3.1 inhibitor data set. Our experiments show that excluding false positive docking poses using the proposed classifiers improves virtual high-throughput screening to identify novel molecules against each target protein compared to the initial screen based on the docking scores.


Assuntos
Canais Iônicos , Redes Neurais de Computação , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica
4.
Mol Pharmacol ; 92(4): 469-480, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28760780

RESUMO

Intermediate-conductance (KCa3.1) and small-conductance (KCa2) calcium-activated K+ channels are gated by calcium binding to calmodulin (CaM) molecules associated with the calmodulin-binding domain (CaM-BD) of these channels. The existing KCa activators, such as naphtho[1,2-d]thiazol-2-ylamine (SKA-31), 6,7-dichloro-1H-indole-2,3-dione 3-oxime (NS309), and 1-ethylbenzimidazolin-2-one (EBIO), activate both channel types with similar potencies. In a previous chemistry effort, we optimized the benzothiazole pharmacophore of SKA-31 toward KCa3.1 selectivity and identified 5-methylnaphtho[2,1-d]oxazol-2-amine (SKA-121), which exhibits 40-fold selectivity for KCa3.1 over KCa2.3. To understand why introduction of a single CH3 group in five-position of the benzothiazole/oxazole system could achieve such a gain in selectivity for KCa3.1 over KCa2.3, we first localized the binding site of the benzothiazoles/oxazoles to the CaM-BD/CaM interface and then used computational modeling software to generate models of the KCa3.1 and KCa2.3 CaM-BD/CaM complexes with SKA-121. Based on a combination of mutagenesis and structural modeling, we suggest that all benzothiazole/oxazole-type KCa activators bind relatively "deep" in the CaM-BD/CaM interface and hydrogen bond with E54 on CaM. In KCa3.1, SKA-121 forms an additional hydrogen bond network with R362. In contrast, NS309 sits more "forward" and directly hydrogen bonds with R362 in KCa3.1. Mutating R362 to serine, the corresponding residue in KCa2.3 reduces the potency of SKA-121 by 7-fold, suggesting that R362 is responsible for the generally greater potency of KCa activators on KCa3.1. The increase in SKA-121's KCa3.1 selectivity compared with its parent, SKA-31, seems to be due to better overall shape complementarity and hydrophobic interactions with S372 and M368 on KCa3.1 and M72 on CaM at the KCa3.1-CaM-BD/CaM interface.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Intermediária/química , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Ativação do Canal Iônico/fisiologia , Oxazóis/metabolismo , Oxazóis/farmacologia , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/agonistas , Ativação do Canal Iônico/efeitos dos fármacos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
5.
Neuropharmacology ; 224: 109349, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36436594

RESUMO

Epileptogenic seizures, or status epilepticus (SE), leads to excitotoxic injury in hippocampal and limbic neurons in the kainic acid (KA) animal model of temporal lobe epilepsy (TLE). Here, we have further characterized neural activity regulated methylaminoisobutryic acid (MeAIB)/glutamine transport activity in mature rat hippocampal neurons in vitro that is inhibited by riluzole (IC50 = 1 µM), an anti-convulsant benzothiazole agent. We screened a library of riluzole derivatives and identified SKA-41 followed by a second screen and synthesized several novel chlorinated aminothiazoles (SKA-377, SKA-378, SKA-379) that are also potent MeAIB transport inhibitors in vitro, and brain penetrant following systemic administration. When administered before KA, SKA-378 did not prevent seizures but still protected the hippocampus and several other limbic areas against SE-induced neurodegeneration at 3d. When SKA-377 - 379, (30 mg/kg) were administered after KA-induced SE, acute neural injury in the CA3, CA1 and CA4/hilus was also largely attenuated. Riluzole (10 mg/kg) blocks acute neural injury. Kinetic analysis of SKA-378 and riluzoles' blockade of Ca2+-regulated MeAIB transport in neurons in vitro indicates that inhibition occurs via a non-competitive, indirect mechanism. Sodium channel NaV1.6 antagonism blocks neural activity regulated MeAIB/Gln transport in vitro (IC50 = 60 nM) and SKA-378 is the most potent inhibitor of NaV1.6 (IC50 = 28 µM) compared to NaV1.2 (IC50 = 118 µM) in heterologous cells. However, pharmacokinetic analysis suggests that sodium channel blockade may not be the predominant mechanism of neuroprotection here. Riluzole and our novel aminothiazoles are agents that attenuate acute neural hippocampal injury following KA-induced SE and may help to understand mechanisms involved in the progression of epileptic disease.


Assuntos
Epilepsia do Lobo Temporal , Estado Epiléptico , Ratos , Animais , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Riluzol/farmacologia , Cinética , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Hipocampo , Ácido Caínico/toxicidade , Modelos Animais de Doenças
6.
Front Pharmacol ; 10: 972, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616290

RESUMO

Calcium-activated K+ channels constitute attractive targets for the treatment of neurological and cardiovascular diseases. To explain why certain 2-aminobenzothiazole/oxazole-type KCa activators (SKAs) are KCa3.1 selective we previously generated homology models of the C-terminal calmodulin-binding domain (CaM-BD) of KCa3.1 and KCa2.3 in complex with CaM using Rosetta modeling software. We here attempted to employ this atomistic level understanding of KCa activator binding to switch selectivity around and design KCa2.2 selective activators as potential anticonvulsants. In this structure-based drug design approach we used RosettaLigand docking and carefully compared the binding poses of various SKA compounds in the KCa2.2 and KCa3.1 CaM-BD/CaM interface pocket. Based on differences between residues in the KCa2.2 and KCa.3.1 models we virtually designed 168 new SKA compounds. The compounds that were predicted to be both potent and KCa2.2 selective were synthesized, and their activity and selectivity tested by manual or automated electrophysiology. However, we failed to identify any KCa2.2 selective compounds. Based on the full-length KCa3.1 structure it was recently demonstrated that the C-terminal crystal dimer was an artefact and suggested that the "real" binding pocket for the KCa activators is located at the S4-S5 linker. We here confirmed this structural hypothesis through mutagenesis and now offer a new, corrected binding site model for the SKA-type KCa channel activators. SKA-111 (5-methylnaphtho[1,2-d]thiazol-2-amine) is binding in the interface between the CaM N-lobe and the S4-S5 linker where it makes van der Waals contacts with S181 and L185 in the S45A helix of KCa3.1.

7.
Bioelectricity ; 1(3): 169-179, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471819

RESUMO

Background: Dying tumor cells release intracellular potassium (K+), raising extracellular K+ ([K+]e) in the tumor microenvironment (TME) to 40-50 mM (high-[K+]e). Here, we investigated the effect of high-[K+]e on T cell functions. Materials and Methods: Functional impacts of high-[K+]e on human T cells were determined by cellular, molecular, and imaging assays. Results: Exposure to high-[K+]e suppressed the proliferation of central memory and effector memory T cells, while T memory stem cells were unaffected. High-[K+]e inhibited T cell cytokine production and dampened antitumor cytotoxicity, by modulating the Akt signaling pathway. High-[K+]e caused significant upregulation of the immune checkpoint protein PD-1 in activated T cells. Although the number of KCa3.1 calcium-activated potassium channels expressed in T cells remained unaffected under high-[K+]e, a novel KCa3.1 activator, SKA-346, rescued T cells from high-[K+]e-mediated suppression. Conclusion: High-[K+]e represents a so far overlooked secondary checkpoint in cancer. KCa3.1 activators could overcome such "ionic-checkpoint"-mediated immunosuppression in the TME, and be administered together with known PD-1 inhibitors and other cancer therapeutics to improve outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA