Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cells Int ; 2016: 4612531, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27413379

RESUMO

We investigated changes in PA levels by the treatment of human bone-marrow-derived mesenchymal stem cells (hBM-MSCs) in ischemic stroke in rat brain model and in cultured neuronal SH-SY5Y cells exposed to oxygen-glucose deprivation (OGD). In ischemic rat model, transient middle cerebral artery occlusion (MCAo) was performed for 2 h, followed by intravenous transplantation of hBM-MSCs or phosphate-buffered saline (PBS) the day following MCAo. Metabolic profiling analysis of PAs was examined in brains from three groups: control rats, PBS-treated MCAo rats (MCAo), and hBM-MSCs-treated MCAo rats (MCAo + hBM-MSCs). In ischemic cell model, SH-SY5Y cells were exposed to OGD for 24 h, treated with hBM-MSCs (OGD + hBM-MSCs) prior to continued aerobic incubation, and then samples were collected after coculture for 72 h. In the in vivo MCAo ischemic model, levels of some PAs in brain samples of the MCAo and MCAo + hBM-MSCs groups were significantly different from those of the control group. In particular, putrescine, cadaverine, and spermidine in brain tissues of the MCAo + hBM-MSCs group were significantly reduced in comparison to those in the MCAo group. In the in vitro OGD system, N (1)-acetylspermidine, spermidine, N (1)-acetylspermine, and spermine in cells of the OGD + hBM-MSCs group were significantly reduced compared to those of OGD group.

2.
Sci Rep ; 6: 29095, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27378605

RESUMO

The potential toxicity of nanoparticles, particularly to neurons, is a major concern. In this study, we assessed the cytotoxicity of silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye (MNPs@SiO2(RITC)) in HEK293 cells, SH-SY5Y cells, and rat primary cortical and dopaminergic neurons. In cells treated with 1.0 µg/µl MNPs@SiO2(RITC), the expression of several genes related to the proteasome pathway was altered, and proteasome activity was significantly reduced, compared with control and with 0.1 µg/µl MNPs@SiO2(RITC)-treated cells. Due to the reduction of proteasome activity, formation of cytoplasmic inclusions increased significantly in HEK293 cells over-expressing the α-synuclein interacting protein synphilin-1 as well as in primary cortical and dopaminergic neurons. Primary neurons, particularly dopaminergic neurons, were more vulnerable to MNPs@SiO2(RITC) than SH-SY5Y cells. Cellular polyamines, which are associated with protein aggregation, were significantly altered in SH-SY5Y cells treated with MNPs@SiO2(RITC). These findings highlight the mechanisms of neurotoxicity incurred by nanoparticles.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Corpos de Inclusão/efeitos dos fármacos , Nanopartículas de Magnetita/efeitos adversos , alfa-Sinucleína/genética , Animais , Neurônios Dopaminérgicos/patologia , Células HEK293 , Humanos , Nanopartículas de Magnetita/química , Cultura Primária de Células , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Agregação Patológica de Proteínas/induzido quimicamente , Ratos , Rodaminas/química , Dióxido de Silício/efeitos adversos , Dióxido de Silício/química
3.
ACS Nano ; 6(9): 7665-80, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22830605

RESUMO

Magnetic nanoparticles (MNPs) have proven themselves to be useful in biomedical research; however, previous reports were insufficient to address the potential dangers of nanoparticles. Here, we investigated gene expression and metabolic changes based on the microarray and gas chromatography-mass spectrometry with human embryo kidney 293 cells treated with MNPs@SiO(2)(RITC), a silica-coated MNP containing Rhodamine B isothiocyanate (RITC). In addition, measurement of reactive oxygen species (ROS) and ATP analysis were performed to evaluate the effect of MNPs@SiO(2)(RITC) on mitochondrial function. Compared to the nontreated control, glutamic acid was increased by more than 2.0-fold, and expression of genes related to the glutamic acid metabolic pathway was also disturbed in 1.0 µg/µL of MNPs@SiO(2)(RITC)-treated cells. Furthermore, increases in ROS concentration and mitochondrial damage were observed in this MNPs@SiO(2)(RITC) concentration. The organic acids related to the Krebs cycle were also disturbed, and the capacity of ATP synthesis was decreased in cell treated with an overdose of MNPs@SiO(2)(RITC). Collectively, these results suggest that overdose (1.0 µg/µL) of MNPs caused transcriptomic and metabolic disturbance. In addition, we suggest that a combination of gene expression and metabolic profiles will provide more detailed and sensitive toxicological evaluation for nanoparticles.


Assuntos
Materiais Revestidos Biocompatíveis/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Nanopartículas de Magnetita/administração & dosagem , Metaboloma/fisiologia , Proteoma/metabolismo , Dióxido de Silício/administração & dosagem , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA