Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Plant Cell Rep ; 38(7): 793-801, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30968200

RESUMO

KEY MESSAGE: Arabidopsis GI negatively regulates chloroplast biogenesis and resistance to the herbicide butafenacil by enhanced activity and transcriptional levels of antioxidant enzymes Chloroplast biogenesis is blocked by retrograde signaling triggered by diverse internal and external cues, including sugar, reactive oxygen species (ROS), phytohormones, and abiotic stress. Efficient chloroplast biogenesis is essential for crop productivity due to its effect on photosynthetic efficiency, and is associated with agronomic traits such as insect/disease resistance, herbicide resistance, and abiotic stress tolerance. Here, we show that the circadian clock-controlled gene GIGANTEA (GI) regulates chloroplast biogenesis in Arabidopsis thaliana. The gi-2 mutant showed reduced sensitivity to the chloroplast biogenesis inhibitor lincomycin, maintaining high levels of photosynthetic proteins. By contrast, wild-type and GI-overexpressing plants were sensitive to lincomycin, with variegated leaves and reduced photosynthetic protein levels. GI is degraded by lincomycin, suggesting that GI is genetically linked to chloroplast biogenesis. The GI mutant alleles gi-1 and gi-2 were resistant to the herbicide butafenacil, which inhibits protoporphyrinogen IX oxidase activity and triggers ROS-mediated cell death via the accumulation of chlorophyll precursors. Butafenacil-mediated accumulation of superoxide anions and H2O2 was not detected in gi-1 or gi-2, as revealed by histochemical staining. The activities of the antioxidant enzymes superoxide dismutase, peroxidase, and catalase were 1.2-1.4-fold higher in both gi mutants compared to the wild type. Finally, the expression levels of antioxidant enzyme genes were 1.5-2-fold higher in the mutants than in the wild type. These results suggest that GI negatively regulates chloroplast biogenesis and resistance to the herbicide butafenacil, providing evidence for a genetic link between GI and chloroplast biogenesis, which could facilitate the development of herbicide-resistant crops.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Herbicidas/farmacologia , Hidrocarbonetos Fluorados/farmacologia , Pirimidinas/farmacologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Peróxido de Hidrogênio/metabolismo , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA