Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 44(1): 238-253, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031841

RESUMO

BACKGROUND: Biological sex differences play a vital role in cardiovascular diseases, including atherosclerosis. The endothelium is a critical contributor to cardiovascular pathologies since endothelial cells (ECs) regulate vascular tone, redox balance, and inflammatory reactions. Although EC activation and dysfunction play an essential role in the early and late stages of atherosclerosis development, little is known about sex-dependent differences in EC. METHODS: We used human and mouse aortic EC as well as EC-lineage tracing (Cdh5-CreERT2 Rosa-YFP [yellow fluorescence protein]) atherosclerotic Apoe-/- mice to investigate the biological sexual dimorphism of the EC functions in vitro and in vivo. Bioinformatics analyses were performed on male and female mouse aortic EC and human lung and aortic EC. RESULTS: In vitro, female human and mouse aortic ECs showed more apoptosis and higher cellular reactive oxygen species levels than male EC. In addition, female mouse aortic EC had lower mitochondrial membrane potential (ΔΨm), lower TFAM (mitochondrial transcription factor A) levels, and decreased angiogenic potential (tube formation, cell viability, and proliferation) compared with male mouse aortic EC. In vivo, female mice had significantly higher lipid accumulation within the aortas, impaired glucose tolerance, and lower endothelial-mediated vasorelaxation than males. Using the EC-lineage tracing approach, we found that female lesions had significantly lower rates of intraplaque neovascularization and endothelial-to-mesenchymal transition within advanced atherosclerotic lesions but higher incidents of missing EC lumen coverage and higher levels of oxidative products and apoptosis. RNA-seq analyses revealed that both mouse and human female EC had higher expression of genes associated with inflammation and apoptosis and lower expression of genes related to angiogenesis and oxidative phosphorylation than male EC. CONCLUSIONS: Our study delineates critical sex-specific differences in EC relevant to proinflammatory, pro-oxidant, and angiogenic characteristics, which are entirely consistent with a vulnerable phenotype in females. Our results provide a biological basis for sex-specific proatherosclerotic mechanisms.


Assuntos
Doenças da Aorta , Aterosclerose , Feminino , Masculino , Humanos , Camundongos , Animais , Células Endoteliais/metabolismo , Doenças da Aorta/patologia , Aterosclerose/patologia , Aorta/patologia , Células Cultivadas , Espécies Reativas de Oxigênio/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL
2.
Biochem Biophys Res Commun ; 659: 20-28, 2023 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-37031590

RESUMO

Skeletal muscle fiber type specification is changeable during muscle regeneration following cardiotoxin (CTX) injection; however, the mechanism of muscle fiber shift in regenerating muscle fibers remains unclear. Furthermore, it is unclear as to which factors determine skeletal muscle fiber types in regenerating muscle fibers. Previous studies showed that CTX-induced muscle damage resulted in a temporary hypoxic condition, indicating that hypoxia-inducible factor (HIF)-1α may be involved in muscle fiber type transition. Stabilization of HIF-1α has been shown to result in muscle fiber type transition toward slow-twitch phenotype through the calcineurin/nuclear factor activated T cell 1 (NFATc1) signaling pathway. Therefore, the aim of the present study was to determine whether the calcineurin/NFATc1 pathway is a key mediator of skeletal muscle fiber type transition during muscle regeneration. We found that CTX-induced muscle damage resulted in transient ischemia and HIF-1α expression in skeletal muscle. Additionally, it shifted the muscle fiber type proportion toward a slow-twitch phenotype in the soleus muscle (37.5% in the control muscle vs. 61.3% in the damaged muscle; p < 0.01) three weeks after muscle damage. Moreover, the NFATc1 protein levels increased in damaged muscle, and blockage of the calcineurin/NFATc1 signaling pathway by tacrolimus (FK-506) treatment substantially decreased the number of slow-twitch muscle fibers in the soleus muscle. This study demonstrated that CTX-induced muscle injury results in transient ischemia in hind limb muscle and stabilizes HIF-1α. Moreover, muscle damage increased oxidative phenotype muscle fibers through the calcineurin/NFATc1 signaling pathway during muscle regeneration.


Assuntos
Calcineurina , Fatores de Transcrição NFI , Calcineurina/metabolismo , Fatores de Transcrição NFI/metabolismo , Linfócitos T/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Transdução de Sinais , Tacrolimo/farmacologia , Fibras Musculares de Contração Rápida/metabolismo
3.
Exerc Sport Sci Rev ; 50(3): 145-155, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35152237

RESUMO

Recent studies have greatly advanced our understanding of the central role of mitochondria on endothelial function. Here, we propose a hypothesis that unidirectional laminar (pulsatile) flow and disturbed laminar (oscillatory) flow may differentially modulate mitochondrial phenotypes in the context of their bioenergetic, signaling, and biosynthetic functions, providing novel insights into subcellular mechanisms underlying how exercise benefits the improvement of vascular health.


Assuntos
Células Endoteliais , Endotélio Vascular , Células Cultivadas , Humanos , Mitocôndrias , Estresse Mecânico
4.
J Physiol ; 596(18): 4413-4426, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30099751

RESUMO

KEY POINTS: Referring to the muscle memory theory, previously trained muscles acquire strength and volume much faster than naive muscles. Using extreme experimental models such as synergist ablation or steroid administration, previous studies have demonstrated that the number of nuclei increases when a muscle becomes enlarged, which serves as a cellular muscle memory mechanism for the muscle. In the present study, we found that, when rats were subjected to physiologically relevant resistance training, the number of myonuclei increased and was retained during a long-term detraining period. The acquired myonuclei were related to a greater degree of muscle hypertrophic and mitochondrial biogenesis processes following subsequent hypertrophic conditions. Our data suggest a cellular mechanism supporting the notion that exposing young muscles to resistance training would help to restore age-related muscle loss coupled with mitochondrial dysfunction in later life. ABSTRACT: Muscle hypertrophy induced by resistance training is accompanied by an increase in the number of myonuclei. The acquired myonuclei are viewed as a cellular component of muscle memory by which muscle enlargement is promoted during a re-training period. In the present study, we investigated the effect of exercise preconditioning on mitochondrial remodelling induced by resistance training. Sprague-Dawley rats were divided into four groups: untrained control, training, pre-training or re-training. The training groups were subjected to weight loaded-ladder climbing exercise training. Myonuclear numbers were significantly greater (up to 20%) in all trained muscles compared to untrained controls. Muscle mass was significantly higher in the re-training group compared to the training group (∼2-fold increase). Mitochondrial content, mitochondrial biogenesis gene expression levels and mitochondrial DNA copy numbers were significantly higher in re-trained muscles compared to the others. Oxidative myofibres (type I) were significantly increased only in the re-trained muscles. Furthermore, in vitro studies using insulin-like growth factor-1-treated L6 rat myotubes demonstrated that myotubes with a higher myonuclear number confer greater expression levels of both mitochondrial and nuclear genes encoding for constitutive and regulatory mitochondrial proteins, which also showed a greater mitochondrial respiratory function. These data suggest that myonuclei acquired from previous training facilitate mitochondrial biogenesis in response to subsequent retraining by (at least in part) enhancing cross-talk between mitochondria and myonuclei in the pre-conditioned myofibres.


Assuntos
Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Biogênese de Organelas , Condicionamento Físico Animal , Animais , Núcleo Celular/metabolismo , DNA Mitocondrial/genética , Feminino , Fibras Musculares Esqueléticas/metabolismo , Força Muscular , Ratos , Ratos Sprague-Dawley
5.
Front Genet ; 15: 1356558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660676

RESUMO

Objectives: We previously found that the pluripotency factor OCT4 is reactivated in smooth muscle cells (SMC) in human and mouse atherosclerotic plaques and plays an atheroprotective role. Loss of OCT4 in SMC in vitro was associated with decreases in SMC migration. However, molecular mechanisms responsible for atheroprotective SMC-OCT4-dependent effects remain unknown. Methods: Since studies in embryonic stem cells demonstrated that OCT4 regulates long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), making them candidates for OCT4 effect mediators, we applied an in vitro approach to investigate the interactions between OCT4-regulated lncRNAs, mRNAs, and miRNAs in SMC. We used OCT4 deficient mouse aortic SMC (MASMC) treated with the pro-atherogenic oxidized phospholipid POVPC, which, as we previously demonstrated, suppresses SMC contractile markers and induces SMC migration. Differential expression of lncRNAs, mRNAs, and miRNAs was obtained by lncRNA/mRNA expression array and small-RNA microarray. Long non-coding RNA to mRNA associations were predicted based on their genomic proximity and association with vascular diseases. Given a recently discovered crosstalk between miRNA and lncRNA, we also investigated the association of miRNAs with upregulated/downregulated lncRNA-mRNA pairs. Results: POVPC treatment in SMC resulted in upregulating genes related to the axon guidance and focal adhesion pathways. Knockdown of Oct4 resulted in differential regulation of pathways associated with phagocytosis. Importantly, these results were consistent with our data showing that OCT4 deficiency attenuated POVPC-induced SMC migration and led to increased phagocytosis. Next, we identified several up- or downregulated lncRNA associated with upregulation of the specific mRNA unique for the OCT4 deficient SMC, including upregulation of ENSMUST00000140952-Hoxb5/6 and ENSMUST00000155531-Zfp652 along with downregulation of ENSMUST00000173605-Parp9 and, ENSMUST00000137236-Zmym1. Finally, we found that many of the downregulated miRNAs were associated with cell migration, including miR-196a-1 and miR-10a, targets of upregulated ENSMUST00000140952, and miR-155 and miR-122, targets of upregulated ENSMUST00000155531. Oppositely, the upregulated miRNAs were anti-migratory and pro-phagocytic, such as miR-10a/b and miR-15a/b, targets of downregulated ENSMUST00000173605, and miR-146a/b and miR-15b targets of ENSMUST00000137236. Conclusion: Our integrative analyses of the lncRNA-miRNA-mRNA interactions in SMC indicated novel potential OCT4-dependent mechanisms that may play a role in SMC phenotypic transitions.

6.
J Am Heart Assoc ; 13(8): e033881, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563369

RESUMO

BACKGROUND: Pyroptosis executor GsdmD (gasdermin D) promotes atherosclerosis in mice and humans. Disulfiram was recently shown to potently inhibit GsdmD, but the in vivo efficacy and mechanism of disulfiram's antiatherosclerotic activity is yet to be explored. METHODS AND RESULTS: We used human/mouse macrophages, endothelial cells, and smooth muscle cells and a hyperlipidemic mouse model of atherosclerosis to determine disulfiram antiatherosclerotic efficacy and mechanism. The effects of disulfiram on several atheroprotective pathways such as autophagy, efferocytosis, phagocytosis, and gut microbiota were determined. Atomic force microscopy was used to determine the effects of disulfiram on the biophysical properties of the plasma membrane of macrophages. Disulfiram-fed hyperlipidemic apolipoprotein E-/- mice showed significantly reduced interleukin-1ß release upon in vivo Nlrp3 (NLR family pyrin domain containing 3) inflammasome activation. Disulfiram-fed mice showed smaller atherosclerotic lesions (~27% and 29% reduction in males and females, respectively) and necrotic core areas (~50% and 46% reduction in males and females, respectively). Disulfiram induced autophagy in macrophages, smooth muscle cells, endothelial cells, hepatocytes/liver, and atherosclerotic plaques. Disulfiram modulated other atheroprotective pathways (eg, efferocytosis, phagocytosis) and gut microbiota. Disulfiram-treated macrophages showed enhanced phagocytosis/efferocytosis, with the mechanism being a marked increase in cell-surface expression of efferocytic receptor MerTK. Atomic force microscopy analysis revealed altered biophysical properties of disulfiram-treated macrophages, showing increased order-state of plasma membrane and increased adhesion strength. Furthermore, 16sRNA sequencing of disulfiram-fed hyperlipidemic mice showed highly significant enrichment in atheroprotective gut microbiota Akkermansia and a reduction in atherogenic Romboutsia species. CONCLUSIONS: Taken together, our data show that disulfiram can simultaneously modulate several atheroprotective pathways in a GsdmD-dependent as well as GsdmD-independent manner.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Masculino , Feminino , Camundongos , Humanos , Animais , Dissulfiram , Eferocitose , Células Endoteliais/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/prevenção & controle , Autofagia
7.
Respir Physiol Neurobiol ; 314: 104089, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37269888

RESUMO

This study investigated the impact of exercise training on major pulmonary vasomotor mediators and receptors including endothelial nitric oxide synthase (eNOS) inducible NOS (iNOS), endothelin-1 (ET-1), ET-1 receptors A (ETA) and-B (ETB) in high-fat-high-carbohydrate (HFHC) induced non-alcoholic fatty liver disease (NAFLD). NAFLD increased iNOS, ET-1 and ETA (p < 0.05), but not ETB (p > 0.05). Exercise attenuated iNOS, ET-1 and ETA (p < 0.05)., but not ETB (p > 0.05) and eNOS (p > 0.05). Exercise training is beneficial for pulmonary vasculature in NAFLD.


Assuntos
Óxido Nítrico Sintase , Hepatopatia Gordurosa não Alcoólica , Humanos , Óxido Nítrico Sintase/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Óxido Nítrico Sintase Tipo II , RNA Mensageiro , Óxido Nítrico Sintase Tipo III , Endotelina-1/metabolismo , Endotelina-1/farmacologia , Receptor de Endotelina A , Exercício Físico
8.
Front Cardiovasc Med ; 10: 1276945, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942066

RESUMO

Introduction: There is growing evidence that smooth muscle cell (SMC) phenotypic transitions play critical roles during normal developmental and tissue recovery processes and in pathological conditions such as atherosclerosis. However, the molecular mechanisms responsible for these transitions are not well understood. Recently, we found that the embryonic stem cell/induced pluripotent stem cell (iPSC) factor OCT4, which was believed to be silenced in somatic cells, plays an atheroprotective role in SMC, and regulates angiogenesis after corneal alkali burn and hindlimb ischemia by mediating microvascular SMC and pericyte migration. However, the kinetics of OCT4 activation in arterial SMC and its role in acute pathological conditions are still unknown. Methods and Results: Here, using an Oct4-IRES-GFP reporter mouse model, we found that OCT4 is reactivated in the carotid artery 18 hours post-acute ligation-induced injury, a common in vivo model of the SMC phenotypic transitions. Next, using a tamoxifen-inducible Myh11-CreERT2 Oct4 knockout mouse model, we found that the loss of OCT4, specifically in SMC, led to accelerated neointima formation and increased tunica media following carotid artery ligation, at least in part by increasing SMC proliferation within the media. Bulk RNA sequencing analysis on the cultured SMC revealed significant down-regulation of the SMC contractile markers and dysregulation of the genes belonging to the regulation of cell proliferation and, positive and negative regulation for cell migration ontological groups following genetic inactivation of Oct4. We also found that loss of Oct4 resulted in suppression of contractile SMC markers after the injury and in cultured aortic SMC. Further mechanistic studies revealed that OCT4 regulates SMC contractile genes, ACTA2 and TAGLN, at least in part by direct binding to the promoters of these genes. Conclusion: These results demonstrate that the pluripotency factor OCT4 is quickly activated in SMC after the acute vascular injury and inhibits SMC hyperproliferation, which may be protective in preventing excessive neointima formation.

9.
J Obes Metab Syndr ; 31(1): 37-50, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35283364

RESUMO

Although the hallmark of obesity is the expansion of adipose tissue, not all adipose tissue expansion is the same. Expansion of healthy adipose tissue is accompanied by adequate capillary angiogenesis and mitochondria-centered metabolic integrity, whereas expansion of unhealthy adipose tissue is associated with capillary and mitochondrial derangement, resulting in deposition of immune cells (M1-stage macrophages) and excess production of pro-inflammatory cytokines. Accumulation of these dysfunctional adipose tissues has been linked to the development of obesity comorbidities, such as type 2 diabetes, hypertension, dyslipidemia, and cardiovascular disease, which are leading causes of human mortality and morbidity in modern society. Mechanistically, vascular rarefaction and mitochondrial incompetency (for example, low mitochondrial content, fragmented mitochondria, defective mitochondrial respiratory function, and excess production of mitochondrial reactive oxygen species) are frequently observed in adipose tissue of obese patients. Recent studies have demonstrated that exercise is a potent behavioral intervention for preventing and reducing obesity and other metabolic diseases. However, our understanding of potential cellular mechanisms of exercise, which promote healthy adipose tissue expansion, is at the beginning stage. In this review, we hypothesize that exercise can induce unique physiological stimuli that can alter angiogenesis and mitochondrial remodeling in adipose tissues and ultimately promote the development and progression of healthy adipogenesis. We summarize recent reports on how regular exercise can impose differential processes that lead to the formation of either healthy or unhealthy adipose tissue and discuss key knowledge gaps that warrant future research.

10.
Redox Biol ; 50: 102252, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121402

RESUMO

Tumor suppressor p53 plays a pivotal role in orchestrating mitochondrial remodeling by regulating their content, fusion/fission processes, and intracellular signaling molecules that are associated with mitophagy and apoptosis pathways. In order to determine a molecular mechanism underlying flow-mediated mitochondrial remodeling in endothelial cells, we examined, herein, the role of p53 on mitochondrial adaptations to physiological flow and its relevance to vascular function using endothelial cell-specific p53 deficient mice. We observed no changes in aerobic capacity, basal blood pressure, or endothelial mitochondrial phenotypes in the endothelial p53 mull animals. However, after 7 weeks of voluntary wheel running exercise, blood pressure reduction and endothelial mitochondrial remodeling (biogenesis, elongation, and mtDNA replication) were substantially blunted in endothelial p53 null animals compared to the wild-type, subjected to angiotensin II-induced hypertension. In addition, endothelial mtDNA lesions were significantly reduced following voluntary running exercise in wild-type mice, but not in the endothelial p53 null mice. Moreover, in vitro studies demonstrated that unidirectional laminar flow exposure significantly increased key putative regulators for mitochondrial remodeling and reduced mitochondrial reactive oxygen species generation and mtDNA damage in a p53-dependent manner. Mechanistically, unidirectional laminar flow instigated translocalization of p53 into the mitochondrial matrix where it binds to mitochondrial transcription factor A, TFAM, resulting in improving mtDNA integrity. Taken together, our findings suggest that p53 plays an integral role in mitochondrial remodeling under physiological flow condition and the flow-induced p53-TFAM axis may be a novel molecular intersection for enhancing mitochondrial homeostasis in endothelial cells.


Assuntos
DNA Mitocondrial , Proteína Supressora de Tumor p53 , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Células Endoteliais/metabolismo , Camundongos , Atividade Motora , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
JCI Insight ; 7(18)2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36134656

RESUMO

Endothelial mitochondria play a pivotal role in maintaining endothelial cell (EC) homeostasis through constantly altering their size, shape, and intracellular localization. Studies show that the disruption of the basal mitochondrial network in EC, forming excess fragmented mitochondria, implicates cardiovascular disease. However, cellular consequences underlying the morphological changes in the endothelial mitochondria under distinctively different, but physiologically occurring, flow patterns (i.e., unidirectional flow [UF] versus disturbed flow [DF]) are largely unknown. The purpose of this study was to investigate the effect of different flow patterns on mitochondrial morphology and its implications in EC phenotypes. We show that mitochondrial fragmentation is increased at DF-exposed vessel regions, where elongated mitochondria are predominant in the endothelium of UF-exposed regions. DF increased dynamin-related protein 1 (Drp1), mitochondrial reactive oxygen species (mtROS), hypoxia-inducible factor 1, glycolysis, and EC activation. Inhibition of Drp1 significantly attenuated these phenotypes. Carotid artery ligation and microfluidics experiments further validate that the significant induction of mitochondrial fragmentation was associated with EC activation in a Drp1-dependent manner. Contrarily, UF in vitro or voluntary exercise in vivo significantly decreased mitochondrial fragmentation and enhanced fatty acid uptake and OXPHOS. Our data suggest that flow patterns profoundly change mitochondrial fusion/fission events, and this change contributes to the determination of proinflammatory and metabolic states of ECs.


Assuntos
Células Endoteliais , Dinâmica Mitocondrial , Dinaminas , Células Endoteliais/metabolismo , Ácidos Graxos/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Metaboloma , Espécies Reativas de Oxigênio/metabolismo
12.
Cardiovasc Res ; 118(11): 2458-2477, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35325071

RESUMO

AIMS: Until recently, the pluripotency factor Octamer (ATGCAAAT)-binding transcriptional factor 4 (OCT4) was believed to be dispensable in adult somatic cells. However, our recent studies provided clear evidence that OCT4 has a critical atheroprotective role in smooth muscle cells. Here, we asked if OCT4 might play a functional role in regulating endothelial cell (EC) phenotypic modulations in atherosclerosis. METHODS AND RESULTS: Specifically, we show that EC-specific Oct4 knockout resulted in increased lipid, LGALS3+ cell accumulation, and altered plaque characteristics consistent with decreased plaque stability. A combination of single-cell RNA sequencing and EC-lineage-tracing studies revealed increased EC activation, endothelial-to-mesenchymal transitions, plaque neovascularization, and mitochondrial dysfunction in the absence of OCT4. Furthermore, we show that the adenosine triphosphate (ATP) transporter, ATP-binding cassette (ABC) transporter G2 (ABCG2), is a direct target of OCT4 in EC and establish for the first time that the OCT4/ABCG2 axis maintains EC metabolic homeostasis by regulating intracellular heme accumulation and related reactive oxygen species production, which, in turn, contributes to atherogenesis. CONCLUSIONS: These results provide the first direct evidence that OCT4 has a protective metabolic function in EC and identifies vascular OCT4 and its signalling axis as a potential target for novel therapeutics.


Assuntos
Aterosclerose , Placa Aterosclerótica , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Linhagem da Célula , Humanos , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/metabolismo , Transdução de Sinais
13.
Skelet Muscle ; 6: 5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26949511

RESUMO

BACKGROUND: Hypoxia exposure is known to induce an alteration in skeletal muscle fiber-type distribution mediated by hypoxia-inducible factor (HIF)-α. The downstream pathway of HIF-α leading to fiber-type shift, however, has not been elucidated. The calcineurin pathway is one of the pathways responsible for slow muscle fiber transition. Because calcineurin pathway is activated by vascular endothelial growth factor (VEGF), one of the factors induced by HIF-1α, we hypothesized that the stabilization of HIF-1α may lead to slow muscle fiber transition via the activation of calcineurin pathway in skeletal muscles. To induce HIF-1α stabilization, we used a loss of function strategy to abrogate Prolyl hydroxylase domain protein (PHD) 2 responsible for HIF-1α hydroxylation making HIF-1α susceptible to ubiquitin dependent degradation by proteasome. The purpose of this study was therefore to examine the effect of HIF-1α stabilization in PHD2 conditional knockout mouse on skeletal muscle fiber-type transition and to elucidate the involvement of calcineurin pathway on muscle fiber-type transition. RESULTS: PHD2 deficiency resulted in an increased capillary density in skeletal muscles due to the induction of vascular endothelial growth factor. It also elicited an alteration of skeletal muscle phenotype toward the type I fibers in both of the soleus (35.8 % in the control mice vs. 46.7 % in the PHD2-deficient mice, p < 0.01) and the gastrocnemius muscle (0.94 vs. 1.89 %, p < 0.01), and the increased proportion of type I fibers appeared to correspond to the area of increased capillary density. In addition, calcineurin and nuclear factor of activated T cell (NFATc1) protein levels were increased in both the gastrocnemius and soleus muscles, suggesting that the calcineurin/NFATc1 pathway was responsible for the type I fiber transition regardless of PGC-1α, which responded minimally to PHD2 deficiency. Indeed, we found that tacrolimus (FK-506), a calcineurin inhibitor, successfully suppressed slow fiber-type formation in PHD2-deficient mice. CONCLUSIONS: Taken together, stabilized HIF-1α induced by PHD2 conditional knockout resulted in the transition of muscle fibers toward a slow fiber type via a calcineurin/NFATc1 signaling pathway. PHD2 conditional knockout mice may serve as a model for chronic HIF-1α stabilization as in mice exposed to low oxygen concentration.


Assuntos
Calcineurina/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/deficiência , Fibras Musculares de Contração Lenta/enzimologia , Músculo Esquelético/enzimologia , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais , Animais , Inibidores de Calcineurina/farmacologia , Capilares/metabolismo , Hipóxia Celular , Linhagem Celular , Genótipo , Hidroxilação , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Camundongos Knockout , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Neovascularização Fisiológica , Fenótipo , Estabilidade Proteica , Transdução de Sinais/efeitos dos fármacos , Tacrolimo/farmacologia , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Plant Pathol J ; 30(4): 416-24, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25506306

RESUMO

Sweet potato is grown extensively from tropical to temperate regions and is an important food crop worldwide. In this study, we established detection methods for 17 major sweet potato viruses using single and multiplex RT-PCR assays. To investigate the current incidence of viral diseases, we collected 154 samples of various sweet potato cultivars showing virus-like symptoms from 40 fields in 10 Korean regions, and analyzed them by RT-PCR using specific primers for each of the 17 viruses. Of the 17 possible viruses, we detected eight in our samples. Sweet potato feathery mottle virus (SPFMV) and sweet potato virus C (SPVC) were most commonly detected, infecting approximately 87% and 85% of samples, respectively. Furthermore, Sweet potato symptomless virus 1 (SPSMV-1), Sweet potato virus G (SPVG), Sweet potato leaf curl virus (SPLCV), Sweet potato virus 2 ( SPV2), Sweet potato chlorotic fleck virus (SPCFV), and Sweet potato latent virus (SPLV) were detected in 67%, 58%, 47%, 41%, 31%, and 20% of samples, respectively. This study presents the first documented occurrence of four viruses (SPVC, SPV2, SPCFV, and SPSMV-1) in Korea. Based on the results of our survey, we developed multiplex RT-PCR assays for simple and simultaneous detection of the eight sweet potato viruses we recorded.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA