Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nanotechnology ; 24(15): 155604, 2013 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-23529153

RESUMO

Carbon nanomaterials are generally used to promote the thermal conductivity of polymer composites. However, individual graphene nanoplatelets (GNPs) or carbon nanotubes (CNTs) limit the realization of the desirable thermal conductivity of the composite in both through- and in-plane directions. In this work, we present the thermal conductivity enhancement of the epoxy composite with carbon hybrid fillers composed of CNTs directly grown on the GNP support. The composite with 20 wt% hybrid filler loading showed 300% and 50% through-plane thermal conductivity improvements in comparison with the individual CNTs and GNPs, respectively. Moreover, it showed an enhanced thermal conductivity of up to 12% higher than that of the simply mixed GNP and CNT fillers. In more detail, hybrid fillers, whose CNTs were synthesized on the GNP support (Support C, Fe/Mo-MgO:GNP=1:0.456) for 60 min via chemical vapor deposition process, presented the highest through-plane thermal conductivity of 2.41 W m-1 K-1 in an epoxy composite.

2.
J Nanosci Nanotechnol ; 12(4): 3380-3, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22849128

RESUMO

This study investigates the coupling modes of a-plane InGaN/GaN mutiquantum wells (MQWs) with single-walled carbon nanotubes (SWCNTs). The enhancement of light emissions at resonance photon energies can be explained by the surface plasmon coupling of the MQW-SWCNT hybrid structure. The photoluminescence (PL) enhancement ratios of the indigo (2.90 eV) emission from MQWs with SWCNTs reveal three coupling modes at 2.50 eV, 2.97 eV, and 3.42 eV. In addition, the trend of the PL intensity ratios and efficiencies corresponds to that of the PL enhancement ratios. The PL efficiencies for the green (2.46 eV) and indigo (2.90 eV) emissions of SWCNT-coated MQWs are 32% and 110% better than the corresponding values of uncoated MQWs, respectively. The results show that the MQW-SWCNT hybrid structure has the potential to be applied in high-efficiency light emitters in the visible and ultraviolet range.

3.
Sci Rep ; 7: 40087, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28198798

RESUMO

The outstanding electrical, optical, and mechanical properties of silver nanowire transparent electrodes are attractive for use in many optoelectronic devices, and the recent developments related to these electrodes have led to their commercialization. To more fully utilize the advantages of this technology, developing new process technologies in addition to performance improvements is important. In this report, we propose a novel ultra-simple patterning technology to generate a silver nanowire transparent layer and a unique patterned structure with continuously distributed silver nanowires without any etched areas. The patterning is conducted by exposure to ultraviolet light and rinsing. The exposed and unexposed regions of the resulting layer have dramatically different electrical conductivities, which produces an electrical pathway without using any etching or lift-off processes. The unique patterned structure produced by this etching-free method creates hardly any optical difference between the two regions and results in excellent visibility of the patterned transparent electrode layer.

4.
J Phys Chem B ; 110(41): 20302-7, 2006 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17034211

RESUMO

The role of lateral interconnections between three-dimensional pentacene islands on low surface energy polyimide gate dielectrics was investigated by the measurement of the surface coverage dependence of the charge mobility and the use of conducting-probe atomic force microscopy (CP-AFM). From the correlation between the electrical characteristics and the morphological evolution of the three-dimensionally grown pentacene films-based field-effect transistors, we found that during film growth, the formation of interconnections between the three-dimensional pentacene islands that are isolated at the early stage contributes significantly to the enhancement process of charge mobility. The CP-AFM current mapping images of the pentacene films also indicate that the lateral interconnections play an important role in the formation of good electrical percolation pathways between the three-dimensional pentacene islands.

5.
J Colloid Interface Sci ; 417: 379-84, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24407700

RESUMO

Graphenes with a two-dimensional lattice of carbons have been widely employed in diverse applications owing to their excellent electrical, thermal, mechanical, and gas-barrier properties. However, the frequently-used reduced graphene oxide (rGO), which is synthesized from natural graphites by strong oxidation and subsequent reduction via highly toxic components, exhibits imperfect characteristics because of remaining defect sites on its basal planes. Therefore, in this work, we present a convenient way to prepare graphene nanoplatelets (GNPs) with minimized defect sites on their basal planes employing liquid-phase exfoliation of edge-functionalized expanded graphites (EGs) with amphiphilic organic molecules. Exfoliated GNPs revealed approximately sub-7-nm-thickness and showed stable dispersibility in an organic media during 9 months. Furthermore, spray-coated GNP films presented homogeneously stacked morphologies without noticeable agglomerations.

6.
J Nanosci Nanotechnol ; 14(12): 9139-42, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25971025

RESUMO

Carbon nanotubes (CNTs) are generally used to promote the electrical conductivity of the polymer nanocomposites. However, in spite of their superior properties, CNT's high cost has limited their commercial application, so far. Thus, the development of hybrid carbon nanomaterials (CNMs) composed of CNTs and cheaper CNMs such as carbon fibers (CFs), expanded graphites (EGs), and graphene nanoplatelets (GNPs) is important in terms of reducing the cost of CNT-based fillers. In this study, we prepared EG/CNT hybrid fillers via direct CNT synthesis on the EG support using modified combustion method and thermal chemical vapor deposition (CVD) method, and investigated the electrical conductivity of the expoxy nanocomposite with EG/CNT hybrid fillers. The epoxy nanocomposites with EG/CNT hybrid fillers at 20 wt% filler loading showed 260% and 170% electrical conductivity enhancement in comparison with the EG and the simply mixed EG and CNT fillers, respectively. Our approach provides various applications including electromagnetic interference (EMI) shielding materials, thermal interface materials (TIMs), and reinforced nanocomposites.

7.
Chem Commun (Camb) ; 47(18): 5202-4, 2011 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-21431155

RESUMO

To realize transparent conductive films based on single-walled carbon nanotubes (SWCNTs), we applied a spray coating process with transition metal doping to SWCNT networks. Schottky contacts between metallic and semiconducting SWCNTs changed to Ohmic contacts due to the reduction of metals on the SWCNT surfaces via direct conversion from solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA