Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 21(8): 3649-3656, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33856815

RESUMO

Nanoparticles with multifunctionality and high colloidal stability are essential for biomedical applications. However, their use is often hindered by the formation of thick coating shells and/or nanoparticle agglomeration. Herein, we report a single nanoparticle coating strategy to form 1 nm polymeric shells with a variety of chemical functional groups and surface charges. Under exposure to alternating magnetic field, nanosecond thermal energy pulses trigger a polymerization in the region only a few nanometers from the magnetic nanoparticle (MNP) surface. Modular coatings containing functional groups, according to the respective choice of monomers, are possible. In addition, the surface charge can be tuned from negative through neutral to positive. We adopted a coating method for use in biomedical targeting studies where obtaining compact nanoparticles with the desired surface charge is critical. A single MNP with a zwitterionic charge can provide excellent colloidal stability and cell-specific targeting.


Assuntos
Nanopartículas , Magnetismo , Polimerização , Polímeros
2.
Biophys J ; 118(6): 1502-1510, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32061270

RESUMO

Recent suggestions of nanoscale heat confinement on the surface of synthetic and biogenic magnetic nanoparticles during heating by radio frequency-alternating magnetic fields have generated intense interest because of the potential utility of this phenomenon for noninvasive control of biomolecular and cellular function. However, such confinement would represent a significant departure from the classical heat transfer theory. Here, we report an experimental investigation of nanoscale heat confinement on the surface of several types of iron oxide nanoparticles commonly used in biological research, using an all-optical method devoid of the potential artifacts present in previous studies. By simultaneously measuring the fluorescence of distinct thermochromic dyes attached to the particle surface or dissolved in the surrounding fluid during radio frequency magnetic stimulation, we found no measurable difference between the nanoparticle surface temperature and that of the surrounding fluid for three distinct nanoparticle types. Furthermore, the metalloprotein ferritin produced no temperature increase on the protein surface nor in the surrounding fluid. Experiments mimicking the designs of previous studies revealed potential sources of the artifacts. These findings inform the use of magnetic nanoparticle hyperthermia in engineered cellular and molecular systems.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas , Ferritinas , Temperatura Alta , Campos Magnéticos
3.
Nano Lett ; 18(2): 838-845, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29393650

RESUMO

Cell-based therapies are attractive for treating various degenerative disorders and cancer but delivering functional cells to the region of interest in vivo remains difficult. The problem is exacerbated in dense biological matrices such as solid tissues because these environments impose significant steric hindrances for cell movement. Here, we show that neural stem cells transfected with zinc-doped ferrite magnetic nanoparticles (ZnMNPs) can be pulled by an external magnet to migrate to the desired location in the brain. These magnetically labeled cells (Mag-Cells) can migrate because ZnMNPs generate sufficiently strong mechanical forces to overcome steric hindrances in the brain tissues. Once at the site of lesion, Mag-Cells show enhanced neuronal differentiation and greater secretion of neurotrophic factors than unlabeled control stem cells. Our study shows that ZnMNPs activate zinc-mediated Wnt signaling to facilitate neuronal differentiation. When implemented in a rodent brain stroke model, Mag-Cells led to significant recovery of locomotor performance in the impaired limbs of the animals. Our findings provide a simple magnetic method for controlling migration of stem cells with high therapeutic functions, offering a valuable tool for other cell-based therapies.


Assuntos
Encéfalo/citologia , Diferenciação Celular , Movimento Celular , Magnetismo/métodos , Nanopartículas de Magnetita/química , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Animais , Encéfalo/patologia , Infarto Encefálico/patologia , Infarto Encefálico/terapia , Rastreamento de Células , Células Cultivadas , Compostos Férricos/química , Humanos , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/terapia , Ratos , Zinco/química
4.
Nat Mater ; 16(5): 537-542, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28166216

RESUMO

Nanoscale distance-dependent phenomena, such as Förster resonance energy transfer, are important interactions for use in sensing and imaging, but their versatility for bioimaging can be limited by undesirable photon interactions with the surrounding biological matrix, especially in in vivo systems. Here, we report a new type of magnetism-based nanoscale distance-dependent phenomenon that can quantitatively and reversibly sense and image intra-/intermolecular interactions of biologically important targets. We introduce distance-dependent magnetic resonance tuning (MRET), which occurs between a paramagnetic 'enhancer' and a superparamagnetic 'quencher', where the T1 magnetic resonance imaging (MRI) signal is tuned ON or OFF depending on the separation distance between the quencher and the enhancer. With MRET, we demonstrate the principle of an MRI-based ruler for nanometre-scale distance measurement and the successful detection of both molecular interactions (for example, cleavage, binding, folding and unfolding) and biological targets in in vitro and in vivo systems. MRET can serve as a novel sensing principle to augment the exploration of a wide range of biological systems.


Assuntos
Fenômenos Magnéticos , Imageamento por Ressonância Magnética , Metaloproteinase 2 da Matriz/química , Metaloproteinase 2 da Matriz/metabolismo
5.
Acc Chem Res ; 50(3): 567-572, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28945426

RESUMO

Developing innovative tools that facilitate the understanding of sophisticated biological systems has been one of the Holy Grails in the physical and biological sciences. In this Commentary, we discuss recent advances, opportunities, and challenges in the use of nanomaterials as a precision tool for biology and medicine.


Assuntos
Biologia , Medicina , Nanoestruturas , Humanos , Estimulação Física
6.
Nano Lett ; 17(2): 800-804, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28045532

RESUMO

The magnetic exchange coupling interaction between hard and soft magnetic phases has been important for tailoring nanoscale magnetism, but spin interactions at the core-shell interface have not been well studied. Here, we systematically investigated a new interface phenomenon termed enhanced spin canting (ESC), which is operative when the shell thickness becomes ultrathin, a few atomic layers, and exhibits a large enhancement of magnetic coercivity (HC). We found that ESC arises not from the typical hard-soft exchange coupling but rather from the large magnetic surface anisotropy (KS) of the ultrathin interface. Due to this large increase in magnetism, ultrathin core-shell nanoparticles overreach the theoretical limit of magnetic energy product ((BH)max) and exhibit one of the largest values of specific loss power (SLP), which testifies to their potential capability as an effective mediator of magnetic energy conversion.

7.
Nano Lett ; 16(12): 7455-7460, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960458

RESUMO

Multidrug resistance (MDR) is a leading cause of failure in current chemotherapy treatment and constitutes a formidable challenge in therapeutics. Here, we demonstrate that a nanoscale magnetic tandem apoptosis trigger (m-TAT), which consists of a magnetic nanoparticle and chemodrug (e.g., doxorubicin), can completely remove MDR cancer cells in both in vitro and in vivo systems. m-TAT simultaneously activates extrinsic and intrinsic apoptosis signals in a synergistic fashion and downregulates the drug efflux pump (e.g., P-glycoprotein) which is one of the main causes of MDR. The tandem apoptosis strategy uses low level of chemodrug (in the nanomolar (nM) range) to eliminate MDR cancer cells. We further demonstrate that apoptosis of MDR cancer cells can be achieved in a spatially selective manner with single-cell level precision. Our study indicates that nanoscale tandem activation of convergent signaling pathways is a new platform concept to overcome MDR with high efficacy and specificity.


Assuntos
Antineoplásicos/administração & dosagem , Apoptose , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Nanopartículas de Magnetita , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Linhagem Celular Tumoral , Doxorrubicina , Feminino , Humanos , Camundongos Endogâmicos BALB C
8.
Chem Soc Rev ; 44(14): 4501-16, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25652670

RESUMO

Magnetic nanoparticles have been extensively explored as a versatile platform for magnetic resonance imaging (MRI) contrast agents due to their strong contrast enhancement effects together with the platform capability for multiple imaging modalities. In this tutorial review, we focus on recent progress in the use of magnetic nanoparticles for MRI contrast agents and multi-mode imaging agents such as T1-T2 MRI, MRI-optical, and MRI-radioisotopes. This review also highlights emerging magnetic imaging techniques such as magnetic particle imaging (MPI), magneto-motive ultrasound imaging (MMUS), and magneto-photoacoustic imaging (MPA).


Assuntos
Nanopartículas de Magnetita , Imagem Multimodal/métodos , Imagem Multimodal/tendências , Animais , Linhagem Celular Tumoral , Corantes Fluorescentes , Humanos , Camundongos , Traçadores Radioativos
9.
Angew Chem Int Ed Engl ; 54(3): 923-6, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25425202

RESUMO

Nanoparticle clusters (NPCs) have attracted significant interest owing to their unique characteristics arising from their collective individual properties. Nonetheless, the construction of NPCs in a structurally well-defined and size-controllable manner remains a challenge. Here we demonstrate a strategy to construct size-controlled NPCs using the DNA-binding zinc finger (ZnF) protein. Biotinylated ZnF was conjugated to DNA templates with different lengths, followed by incubation with neutravidin-conjugated nanoparticles. The sequence specificity of ZnF and programmable DNA templates enabled a size-controlled construction of NPCs, resulting in a homogeneous size distribution. We demonstrated the utility of magnetic NPCs by showing a three-fold increase in the spin-spin relaxivity in MRI compared with Feridex. Furthermore, folate-conjugated magnetic NPCs exhibited a specific targeting ability for HeLa cells. The present approach can be applicable to other nanoparticles, finding wide applications in many areas such as disease diagnosis, imaging, and delivery of drugs and genes.


Assuntos
DNA/metabolismo , Nanopartículas de Magnetita/química , Proteínas/metabolismo , Avidina/química , Biotinilação , DNA/química , Células HeLa , Humanos , Substâncias Intercalantes/química , Microscopia de Fluorescência , Ligação Proteica , Proteínas/química , Dedos de Zinco
10.
Nanoscale Adv ; 6(8): 2177-2184, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38633040

RESUMO

Although magnetic nanoparticles demonstrate significant potential as magnetic resonance imaging (MRI) contrast agents, their negative contrasts, liver accumulation, and limited excretion hinder their application. Herein, we developed ultrasmall Mn-doped iron oxide nanoparticles (UMIOs) with distinct advantages as T1 MRI contrast agents. Exceptionally small particle sizes (ca. 2 nm) and magnetization values (5 emu gMn+Fe-1) of UMIOs provided optimal T1 contrast effects with an ideally low r2/r1 value of ∼1. Furthermore, the use of Mn as a dopant facilitated hepatocyte uptake of the particles, allowing liver imaging. In animal studies, UMIOs exhibited significantly enhanced contrasts for sequential T1 imaging of blood vessels and the liver, distinguishing them from conventional magnetic nanoparticles. UMIOs were systematically cleared via dual hepatobiliary and renal excretion pathways, highlighting their safety profile. These characteristics imply substantial potential of UMIOs as T1 contrast agents for the accurate diagnosis of liver diseases.

11.
Sci Rep ; 14(1): 10502, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714849

RESUMO

We aimed to conduct a proof-of-concept study of INV-001 in visualizing lymphatic vessels and nodes without venous contamination and to determine the optimal dose condition of INV-001 for magnetic resonance lymphangiography (MRL) in healthy beagles. MRL was performed using a 3.0-Tesla (T) whole body clinical magnetic resonance imaging (MRI) scanner. A dose-finding study of INV-001 for MRL in beagles (N = 6) was carried out according to an adaptive optimal dose finding design. For the reproducibility study (N = 6), MRL was conducted at selected INV-001 doses (0.056 and 0.112 mg Fe/kg) with a 15 mM concentration. Additionally, an excretion study (N = 3) of INV-001 was conducted by analyzing T1, T2, and T2* maps of the liver and kidney 48 h post-administration. INV-001 administration at doses of 0.056 and 0.112 mg Fe/kg (concentration: 15 mM) consistently demonstrated the visualization of contrast-enhanced lymphatic vessels and nodes without venous contamination in the beagles. The contrast enhancement effect was highest at 30 min after INV-001 administration, then gradually decreasing. No toxicity-related issues were identified during the study. After 48 h, the T1, T2, and T2* values in the liver and both kidneys were found to be comparable to the pre-administration values, indicating thorough INV-001 excretion. The optimal dosing conditions of INV-001 for MRL for contrast-enhanced visualization of lymphatic vessels and nodes exclusively with no venous contamination in beagles was determined to be 0.056 mg Fe/kg with a 15 mM concentration.


Assuntos
Meios de Contraste , Vasos Linfáticos , Linfografia , Imageamento por Ressonância Magnética , Animais , Cães , Imageamento por Ressonância Magnética/métodos , Linfografia/métodos , Meios de Contraste/administração & dosagem , Vasos Linfáticos/diagnóstico por imagem , Masculino , Reprodutibilidade dos Testes , Feminino , Linfonodos/diagnóstico por imagem , Estudo de Prova de Conceito
12.
Mol Imaging Biol ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684581

RESUMO

PURPOSE: Gadolinium (Gd)-based contrast agents are primarily used for contrast-enhanced magnetic resonance lymphangiography (MRL). However, overcoming venous contamination issues remains challenging. This study aims to assess the MRL efficacy of the newly developed iron-based contrast agent (INV-001) that is specially designed to mitigate venous contamination issues. The study further explores the optimal dosage, including both injection volume and concentration, required to achieve successful visualization of the popliteal lymph nodes and surrounding lymphatic vessels. PROCEDURES: All animals utilized in this study were male Sprague-Dawley (SD) rats weighing between 250 and 300 g. The contrast agents prepared were injected intradermally in the fourth phalanx of both hind limbs using a 30-gauge syringe in SD rats. MRL was performed every 16 min on a coronal 3D time-of-flight sequence with saturation bands using a 9.4-T animal machine. RESULTS: Contrary to Gd-DOTA, which exhibited venous contamination in most animals irrespective of injection dosages and conditions, INV-001 showed no venous contamination. For Gd-DOTA, the popliteal lymph nodes and lymphatic vessels reached peak enhancement 16 min after injection from the injection site and then rapidly washed out. However, with INV-001, they reached peak enhancement between 16 and 32 min after injection, with prolonged visualization of the popliteal lymph node and lymphatic vessels. INV-001 at 0.45 µmol (15 mM, 30 µL) and 0.75 µmol (15 mM, 50 µL) achieved high scores for qualitative image analysis, providing good visualization of the popliteal lymph nodes and lymphatic vessels without issues of venous contamination, interstitial space enhancement, or lymph node enlargement. CONCLUSION: In MRL, INV-001, a novel T1 contrast agent based on iron, enables prolonged enhancement of popliteal lymph nodes and lymphatic vessels without venous contamination.

15.
Acc Chem Res ; 44(10): 863-74, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21823593

RESUMO

Early detection and treatment of disease is the most important component of a favorable prognosis. Biomedical researchers have thus invested tremendous effort in improving imaging techniques and treatment methods. Over the past decade, concepts and tools derived from nanotechnology have been applied to overcome the problems of conventional techniques for advanced diagnosis and therapy. In particular, advances in nanoparticle technology have created new paradigms for theranostics, which is defined as the combination of therapeutic and diagnostic agents within a single platform. In this Account, we examine the potential advantages and opportunities afforded by magnetic nanoparticles as platform materials for theranostics. We begin with a brief overview of relevant magnetic parameters, such as saturation magnetization, coercivity, and magnetocrystalline anisotropy. Understanding the interplay of these parameters is critical for optimizing magnetic characteristics needed for effective imaging and therapeutics, which include magnetic resonance imaging (MRI) relaxivity, heat emission, and attractive forces. We then discuss approaches to constructing an MRI nanoparticle contrast agent with high sensitivity. We further introduce a new design concept for a fault-free contrast agent, which is a T1 and T2 dual mode hybrid. Important capabilities of magnetic nanoparticles are the external controllability of magnetic heat generation and magnetic attractive forces for the transportation and movement of biological objects. We show that these functions can be utilized not only for therapeutic hyperthermia of cancer but also for controlled release of cancer drugs through the application of an external magnetic field. Additionally, the use of magnetic nanoparticles to drive mechanical forces is demonstrated to be useful for molecular-level cell signaling and for controlling the ultimate fate of the cell. Finally, we show that targeted imaging and therapy are made possible by attaching a variety of imaging and therapeutic components. These added components include therapeutic genes (small interfering RNA, or siRNA), cancer-specific ligands, and optical reporting dyes. The wide range of accessible features of magnetic nanoparticles underscores their potential as the most promising platform material available for theranostics.


Assuntos
Fenômenos Magnéticos , Nanomedicina/métodos , Nanopartículas/uso terapêutico , Animais , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Humanos , Imageamento por Ressonância Magnética , Nanopartículas/química
17.
Angew Chem Int Ed Engl ; 51(50): 12482-5, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23139178

RESUMO

Highly efficient apoptotic hyperthermia is achieved using a double-effector nanoparticle that can generate reactive oxygen species (ROS) and heat. ROS render cancer cells more susceptible to subsequent heat treatment, which remarkably increases the degree of apoptotic cell death. Xenograft tumors (100 mm(3)) in mice are completely eliminated within 8 days after a single mild magnetic hyperthermia treatment at 43 °C for 30 min.


Assuntos
Apoptose/efeitos dos fármacos , Hipertermia Induzida , Nanopartículas Metálicas/toxicidade , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Humanos , Campos Magnéticos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Metaloporfirinas/química , Metaloporfirinas/uso terapêutico , Metaloporfirinas/toxicidade , Camundongos , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Temperatura , Transplante Heterólogo
18.
ACS Omega ; 6(46): 31161-31167, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34841158

RESUMO

Magnetic nanoparticles have an important role as heat generators in magnetic fluid hyperthermia, a type of next-generation cancer treatment. Despite various trials to improve the heat generation capability of magnetic nanoparticles, iron oxide nanoparticles are the only approved heat generators for clinical applications, which require a large injection dose due to their low hyperthermia efficiency. In this study, iron oxide nanoclusters (NCs) with a highly enhanced hyperthermia effect and adjustable size were synthesized through a facile and simple solvothermal method. Among the samples, the NCs with a size of 25 nm showed the highest hyperthermia efficiency. Differently sized NCs exhibit inconsistent interparticle crystalline alignments, which affect their magnetic properties (e.g., coercivity and saturation magnetization). As a result, the optimal NCs exhibited a significantly enhanced heat generation efficiency compared with that of isolated iron oxide nanoparticles (ca. 7 nm), and their hyperthermia effect on skin cancer cells was confirmed.

19.
Nat Biomed Eng ; 5(3): 252-263, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33686281

RESUMO

Contrast agents for magnetic resonance imaging (MRI) improve anatomical visualizations. However, owing to poor image resolution in whole-body MRI, resolving fine structures is challenging. Here, we report that a nanoparticle with a polysaccharide supramolecular core and a shell of amorphous-like hydrous ferric oxide generating strong T1 MRI contrast (with a relaxivity coefficient ratio of ~1.2) facilitates the imaging, at resolutions of the order of a few hundred micrometres, of cerebral, coronary and peripheral microvessels in rodents and of lower-extremity vessels in rabbits. The nanoparticle can be synthesized at room temperature in aqueous solution and in the absence of surfactants, has blood circulation and renal clearance profiles that prevent opsonization, and leads to better imaging performance than Dotarem (gadoterate meglumine), a clinically approved gadolinium-based MRI contrast agent. The nanoparticle's biocompatibility and imaging performance may prove advantageous in a broad range of preclinical and clinical applications of MRI.


Assuntos
Dextranos/química , Compostos Férricos/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Animais , Materiais Biocompatíveis/química , Meios de Contraste/química , Gadolínio/química , Meglumina/química , Camundongos , Camundongos Endogâmicos BALB C , Microvasos/patologia , Compostos Organometálicos/química , Tamanho da Partícula , Polissacarídeos/química , Coelhos , Ratos , Ratos Sprague-Dawley
20.
J Am Chem Soc ; 132(32): 11015-7, 2010 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-20698661

RESUMO

Achieving high accuracy in the imaging of biological targets is a challenging issue. For MRI, to enhance imaging accuracy, two different imaging modes with specific contrast agents are used; one is a T1 type for a "positive" MRI signal and the other is a T2 type for a "negative" signal. Conventional contrast agents respond only in a single imaging mode and frequently encounter ambiguities in the MR images. Here, we propose a "magnetically decoupled" core-shell design concept to develop a dual mode nanoparticle contrast agent (DMCA). This DMCA not only possesses superior MR contrast effects but also has the unique capability of displaying "AND" logic signals in both the T1 and T2 modes. The latter enables self-confirmation of images and leads to greater diagnostic accuracy. A variety of novel DMCAs are possible, and the use of DMCAs can potentially bring the accuracy of MR imaging of diseases to a higher level.


Assuntos
Lógica , Imageamento por Ressonância Magnética/métodos , Nanopartículas , Meios de Contraste/química , Compostos Inorgânicos/química , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA