Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 76(9): 2791-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20305031

RESUMO

We analyzed cryptophyte nucleomorph 18S rRNA gene sequences retained in natural Myrionecta rubra cells and plastid 16S rRNA gene and psbA sequences retained in natural cells of several Dinophysis species collected from Japanese coastal waters. A total of 715 nucleomorph sequences obtained from 134 M. rubra cells and 564 plastid 16S rRNA gene and 355 psbA sequences from 71 Dinophysis cells were determined. Almost all sequences in M. rubra and Dinophysis spp. were identical to those of Teleaulax amphioxeia, suggesting that M. rubra in Japanese coastal waters preferentially ingest T. amphioxeia. The remaining sequences were closely related to those of Geminigera cryophila and Teleaulax acuta. Interestingly, 37 plastid 16S rRNA gene sequences, which were different from T. amphioxeia and amplified from Dinophysis acuminata and Dinophysis norvegica cells, were identical to the sequence of a D. acuminata cell found in the Greenland Sea, suggesting that a widely distributed and unknown cryptophyte species is also preyed upon by M. rubra and subsequently sequestered by Dinophysis. To confirm the reliability of molecular identification of the cryptophyte Teleaulax species detected from M. rubra and Dinophysis cells, the nucleomorph and plastid genes of Teleaulax species isolated from seawaters were also analyzed. Of 19 isolates, 16 and 3 clonal strains were identified as T. amphioxeia and T. acuta, respectively, and no sequence variation was confirmed within species. T. amphioxeia is probably the primary source of prey for M. rubra in Japanese coastal waters. An unknown cryptophyte may serve as an additional source, depending on localities and seasons.


Assuntos
Alveolados/microbiologia , Cilióforos/microbiologia , Criptófitas/isolamento & purificação , Plastídeos/genética , Sequência de Bases , Criptófitas/classificação , Criptófitas/genética , Meio Ambiente , Genes de RNAr , Oceanos e Mares , Água do Mar/microbiologia
2.
Harmful Algae ; 84: 64-74, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31128814

RESUMO

In recent years, blooms of toxic Alexandrium ostenfeldii strains have been reported from around the world. In 2013, the species formed a red tide in a shallow lagoon in western Japan, which was the first report of the species in the area. To investigate the genetic relatedness of Japanese A. ostenfeldii and global isolates, the full-length SSU, ITS and LSU sequences were determined, and phylogenetic analyses were conducted for isolates from western and northern Japan and from the Baltic Sea. Genotyping and microsatellite sequence comparison were performed to estimate the divergence and connectivity between the populations from western Japan and the Baltic Sea. In all phylogenetic analyses, the isolates from western Japan grouped together with global isolates from shallow and low saline areas, such as the Baltic Sea, estuaries on the east coast of U.S.A. and from the Bohai Sea, China. In contrast, the isolates from northern Japan formed a well-supported separate group in the ITS and LSU phylogenies, indicating differentiation between the Japanese populations. This was further supported by the notable differentiation between the sequences of western and northern Japanese isolates, whereas the lowest differentiation was found between the western Japanese and Chinese isolates. Microsatellite genotyping revealed low genetic diversity in the western Japanese population, possibly explained by a recent introduction to the lagoon from where it was detected. The red tide recorded in the shallow lagoon followed notable changes in the salinity of the waterbody and phytoplankton composition, potentially facilitating the bloom of A. ostenfeldii.


Assuntos
Dinoflagellida , China , Proliferação Nociva de Algas , Japão , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA