Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39273544

RESUMO

Excessive fluoride ingestion during tooth development can cause dental fluorosis. Previously, we reported that fluoride activates histone acetyltransferase (HAT) to acetylate p53, promoting fluoride toxicity in mouse ameloblast-like LS8 cells. However, the roles of HAT and histone acetylation status in fluoride-mediated gene expression remain unidentified. Here, we demonstrate that fluoride-mediated histone modification causes gene expression alterations in LS8 cells. LS8 cells were treated with or without fluoride followed by ChIP-Seq analysis of H3K27ac. Genes were identified by differential H3K27ac peaks within ±1 kb from transcription start sites. The levels of mRNA of identified genes were assessed using rea-time PCR (qPCR). Fluoride increased H3K27ac peaks associated with Bax, p21, and Mdm2 genes and upregulated their mRNA levels. Fluoride decreased H3K27ac peaks and p53, Bad, and Bcl2 had suppressed transcription. HAT inhibitors (Anacardic acid or MG149) suppressed fluoride-induced mRNA of p21 and Mdm2, while fluoride and the histone deacetylase (HDAC) inhibitor sodium butyrate increased Bad and Bcl2 expression above that of fluoride treatment alone. To our knowledge, this is the first study that demonstrates epigenetic regulation via fluoride treatment via H3 acetylation. Further investigation is required to elucidate epigenetic mechanisms of fluoride toxicity in enamel development.


Assuntos
Ameloblastos , Fluoretos , Histonas , Animais , Camundongos , Acetilação/efeitos dos fármacos , Histonas/metabolismo , Ameloblastos/metabolismo , Ameloblastos/efeitos dos fármacos , Fluoretos/farmacologia , Fluoretos/toxicidade , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia
2.
J Cell Mol Med ; 27(12): 1750-1756, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37170687

RESUMO

Bone remodelling is mediated by orchestrated communication between osteoclasts and osteoblasts which, in part, is regulated by coupling and anti-coupling factors. Amongst formally known anti-coupling factors, Semaphorin 4D (Sema4D), produced by osteoclasts, plays a key role in downmodulating osteoblastogenesis. Sema4D is produced in both membrane-bound and soluble forms; however, the mechanism responsible for producing sSema4D from osteoclasts is unknown. Sema4D, TACE and MT1-MMP are all expressed on the surface of RANKL-primed osteoclast precursors. However, only Sema4D and TACE were colocalized, not Sema4D and MT1-MMP. When TACE and MT1-MMP were either chemically inhibited or suppressed by siRNA, TACE was found to be more engaged in shedding Sema4D. Anti-TACE-mAb inhibited sSema4D release from osteoclast precursors by ~90%. Supernatant collected from osteoclast precursors (OC-sup) suppressed osteoblastogenesis from MC3T3-E1 cells, as measured by alkaline phosphatase activity, but OC-sup harvested from the osteoclast precursors treated with anti-TACE-mAb restored osteoblastogenesis activity in a manner that compensates for diminished sSema4D. Finally, systemic administration of anti-TACE-mAb downregulated the generation of sSema4D in the mouse model of critical-sized bone defect, whereas local injection of recombinant sSema4D to anti-TACE-mAb-treated defect upregulated local osteoblastogenesis. Therefore, a novel pathway is proposed whereby TACE-mediated shedding of Sema4D expressed on the osteoclast precursors generates functionally active sSema4D to suppress osteoblastogenesis.


Assuntos
Osteoclastos , Semaforinas , Animais , Camundongos , Modelos Animais de Doenças , Metaloproteinase 14 da Matriz/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Semaforinas/genética , Semaforinas/metabolismo
3.
Cell Biol Int ; 46(9): 1530-1535, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35870165

RESUMO

Oxytocin (OX) is a posterior pituitary hormone secreted into the blood from axon terminals projecting from the posterior pituitary. Recent reports indicate OX plays an important role in the progression of inflammatory diseases such as rheumatoid arthritis. Pulpitis is caused by the activation of the biological defense mechanism of the dental pulp against cariogenic bacteria. However, the role of OX in the pathogenesis of pulpitis remains unknown. The aim of this study was to examine the effect of OX on CXC chemokine ligand 10 (CXCL10) production in human dental pulp stem cells (HDPSCs). Expression of the oxytocin receptor (OXR) on HDPSCs was detected by Western blot analysis and immunofluorescence. CXCL10 production in HDPSCs was measured using an enzyme-linked immunosorbent assay kit. Western blot analysis was performed to determine the phosphorylation levels of signal transduction molecules, including nuclear factor kappa B, mitogen-activated protein kinases (MAPKs), and Akt in HDPSCs. HDPSCs expressed OXR. OX significantly decreased CXCL10 production in tumor necrosis factor (TNF)-α-stimulated HDPSCs. The p38 MAPK and Akt pathways were related to the OX-suppressed CXCL10 production in TNF-α-stimulated HDPSCs. These results indicate that OX appears to modulate the immune response in pulpitis via suppression of CXCL10 production by HDPSCs.


Assuntos
Pulpite , Fator de Necrose Tumoral alfa , Células Cultivadas , Quimiocina CXCL10 , Quimiocinas CXC/farmacologia , Polpa Dentária/metabolismo , Humanos , Ligantes , Ocitocina/farmacologia , Proteínas Proto-Oncogênicas c-akt , Pulpite/metabolismo , Células-Tronco/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
4.
Int J Mol Sci ; 23(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35328359

RESUMO

Effects of the antiosteoblastogenesis factor Semaphorin 4D (Sema4D), expressed by thrombin-activated platelets (TPs), on osteoblastogenesis, as well as osteoclastogenesis, were investigated in vitro. Intact platelets released both Sema4D and IGF-1. However, in response to stimulation with thrombin, platelets upregulated the release of Sema4D, but not IGF-1. Anti-Sema4D-neutralizing monoclonal antibody (mAb) upregulated TP-mediated osteoblastogenesis in MC3T3-E1 osteoblast precursors. MC3T3-E1 cells exposed to TPs induced phosphorylation of Akt and ERK further upregulated by the addition of anti-sema4D-mAb, suggesting the suppressive effects of TP-expressing Sema4D on osteoblastogenesis. On the other hand, TPs promoted RANKL-mediated osteoclastogenesis in the primary culture of bone-marrow-derived mononuclear cells (BMMCs). Among the known three receptors of Sema4D, including Plexin B1, Plexin B2 and CD72, little Plexin B2 was detected, and no Plexin B1 was detected, but a high level of CD72 mRNA was detected in RANKL-stimulated BMMCs by qPCR. Both anti-Sema4D-mAb and anti-CD72-mAb suppressed RANKL-induced osteoclast formation and bone resorptive activity, suggesting that Sema4D released by TPs promotes osteoclastogenesis via ligation to a CD72 receptor. This study demonstrated that Sema4D released by TPs suppresses osteogenic activity and promotes osteoclastogenesis, suggesting the novel property of platelets in bone-remodeling processes.


Assuntos
Osteogênese , Semaforinas , Antígenos CD , Plaquetas , Proteínas do Tecido Nervoso/genética , Receptores de Superfície Celular/genética , Semaforinas/genética , Semaforinas/farmacologia , Trombina/farmacologia
5.
Int J Mol Sci ; 23(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35628440

RESUMO

It is well known that Semaphorin 4D (Sema4D) inhibits IGF-1-mediated osteogenesis by binding with PlexinB1 expressed on osteoblasts. However, its elevated level in the gingival crevice fluid of periodontitis patients and the broader scope of its activities in the context of potential upregulation of osteoclast-mediated periodontal bone-resorption suggest the need for further investigation of this multifaceted molecule. In short, the pathophysiological role of Sema4D in periodontitis requires further study. Accordingly, attachment of the ligature to the maxillary molar of mice for 7 days induced alveolar bone-resorption accompanied by locally elevated, soluble Sema4D (sSema4D), TNF-α and RANKL. Removal of the ligature induced spontaneous bone regeneration during the following 14 days, which was significantly promoted by anti-Sema4D-mAb administration. Anti-Sema4D-mAb was also suppressed in vitro osteoclastogenesis and pit formation by RANKL-stimulated BMMCs. While anti-Sema4D-mAb downmodulated the bone-resorption induced in mouse periodontitis, it neither affected local production of TNF-α and RANKL nor systemic skeletal bone remodeling. RANKL-induced osteoclastogenesis and resorptive activity were also suppressed by blocking of CD72, but not Plexin B2, suggesting that sSema4D released by osteoclasts promotes osteoclastogenesis via ligation to CD72 receptor. Overall, our data indicated that ssSema4D released by osteoclasts may play a dual function by decreasing bone formation, while upregulating bone-resorption.


Assuntos
Perda do Osso Alveolar , Periodontite , Perda do Osso Alveolar/etiologia , Animais , Antígenos CD , Regeneração Óssea , Modelos Animais de Doenças , Camundongos , Periodontite/patologia , Semaforinas , Fator de Necrose Tumoral alfa
6.
BMC Oral Health ; 22(1): 437, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192671

RESUMO

BACKGROUND: The relationship between internal root resorption and oxidative stress has not yet been reported. This study aimed to add molecular insight into internal root resorption. The present study was conducted to investigate the effect of hydrogen peroxide (H2O2) as an inducer of oxidative stress on the calcification ability of human dental pulp cells (hDPCs) and the involvement of inositol 1, 4, 5-trisphosphate (IP3). MATERIAL AND METHODS: hDPCs (Lonza, Basel, Switzerland) were exposed to H2O2. Cell viability and reactive oxygen species (ROS) production were then evaluated. To investigate the effect of H2O2 on the calcification ability of hDPCs, real-time PCR for alkaline phosphatase (ALP) mRNA expression, ALP staining, and Alizarin red staining were performed. Data were compared with those of hDPCs pretreated with 2-aminoethyldiphenylborate (2-APB), which is an IP3 receptor inhibitor. RESULTS: H2O2 at concentrations above 250 µM significantly reduced cell viability (P < 0.01). More ROS production occurred in 100 µM H2O2-treated hDPCs than in control cells (P < 0.01). 2-APB significantly decreased the production (P < 0.05). H2O2-treated hDPCs showed significant reductions in ALP mRNA expression (P < 0.01), ALP activity (P < 0.01), and mineralized nodule deposition compared with negative control cells (P < 0.01). 2-APB significantly inhibited these reductions (P < 0.01, P < 0.05 and P < 0.01, respectively). Data are representative of three independent experiments with three replicates for each treatment and values are expressed as means ± SD. CONCLUSION: To the best of our knowledge, this is the first study documenting the involvement of IP3 signaling in the calcification ability of human dental pulp cells impaired by H2O2.


Assuntos
Polpa Dentária , Reabsorção da Raiz , Fosfatase Alcalina/farmacologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Peróxido de Hidrogênio/farmacologia , Inositol/farmacologia , Receptores de Inositol 1,4,5-Trifosfato/farmacologia , Odontoblastos , Estresse Oxidativo , RNA Mensageiro , Espécies Reativas de Oxigênio
7.
Cell Biol Int ; 45(1): 238-244, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32926524

RESUMO

Human dental pulp cells (HDPCs) play an important role in pulpitis. Semaphorin3A (Sema3A), which is an axon guidance molecule, is a member of the secretory semaphorin family. Recently, Sema3A has been reported to be an osteoprotective factor and to be involved in the immune response. However, the role of Sema3A in dental pulp inflammation remains unknown. The aim of this study was to reveal the existence of Sema3A in human dental pulp tissue and the effect of Sema3A which is released from tumor necrosis factor (TNF)-α-stimulated HDPCs on production of proinflammatory cytokines, such as interleukin (IL)-6 and CXC chemokine ligand 10 (CXCL10), from HDPCs stimulated with TNF-α. Sema3A was detected in inflamed pulp as compared to normal pulp. HDPCs expressed Neuropilin-1(Nrp1) which is Sema3A receptor. TNF-α increased the levels of IL-6 and CXCL10 in HDPCs in time-dependent manner. Sema3A inhibited production of these two cytokines from TNF-α-stimulated HDPCs. TNF-α induced soluble Sema3A production from HDPCs. Moreover, antibody-based neutralization of Sema3A further promoted production of IL-6 and CXCL10 from TNF-α-stimulated HDPCs. Sema3A inhibited nuclear factor (NF)-κB P65 phosphorylation and inhibitor κBα degradation in TNF-α-stimulated HDPCs. These results indicated that Sema3A is induced in human dental pulp, and TNF-α acts on HDPCs to produce Sema3A, which partially inhibits the increase in IL-6 and CXCL10 production induced by TNF-α, and that the inhibition leads to suppression of NF-κB activation. Therefore, it is suggested that Sema3A may regulate inflammation in dental pulp and be novel antiinflammatory target molecule for pulpitis.


Assuntos
Quimiocina CXCL10/biossíntese , Polpa Dentária/citologia , Interleucina-6/biossíntese , NF-kappa B/metabolismo , Semaforina-3A/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Anti-Inflamatórios/metabolismo , Humanos , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/antagonistas & inibidores , Neuropilina-1/metabolismo , Fosforilação , Proteólise
8.
FASEB J ; 32(7): 4016-4030, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29533736

RESUMO

Cell fusion-mediated formation of multinuclear osteoclasts (OCs) plays a key role in bone resorption. It is reported that 2 unique OC-specific fusogens [ i.e., OC-stimulatory transmembrane protein (OC-STAMP) and dendritic cell-specific transmembrane protein (DC-STAMP)], and permissive fusogen CD9, are involved in OC fusion. In contrast to DC-STAMP-knockout (KO) mice, which show the osteopetrotic phenotype, OC-STAMP-KO mice show no difference in systemic bone mineral density. Nonetheless, according to the ligature-induced periodontitis model, significantly lower level of bone resorption was found in OC-STAMP-KO mice compared to WT mice. Anti-OC-STAMP-neutralizing mAb down-modulated in vitro: 1) the emergence of large multinuclear tartrate-resistant acid phosphatase-positive cells, 2) pit formation, and 3) mRNA and protein expression of CD9, but not DC-STAMP, in receptor activator of NF-κB ligand (RANKL)-stimulated OC precursor cells (OCps). While anti-DC-STAMP-mAb also down-regulated RANKL-induced osteoclastogenesis in vitro, it had no effect on CD9 expression. In our mouse model, systemic administration of anti-OC-STAMP-mAb suppressed the expression of CD9 mRNA, but not DC-STAMP mRNA, in periodontal tissue, along with diminished alveolar bone loss and reduced emergence of CD9+ OCps and tartrate-resistant acid phosphatase-positive multinuclear OCs. The present study demonstrated that OC-STAMP partners CD9 to promote periodontal bone destruction by up-regulation of fusion during osteoclastogenesis, suggesting that anti-OC-STAMP-mAb may lead to the development of a novel therapeutic regimen for periodontitis.-Ishii, T., Ruiz-Torruella, M., Ikeda, A., Shindo, S., Movila, A., Mawardi, H., Albassam, A., Kayal, R. A., Al-Dharrab, A. A., Egashira, K., Wisitrasameewong, W., Yamamoto, K., Mira, A. I., Sueishi, K., Han, X., Taubman, M. A., Miyamoto, T., Kawai, T. OC-STAMP promotes osteoclast fusion for pathogenic bone resorption in periodontitis via up-regulation of permissive fusogen CD9.


Assuntos
Perda do Osso Alveolar/metabolismo , Proteínas de Membrana/genética , Osteoclastos/metabolismo , Perda do Osso Alveolar/tratamento farmacológico , Perda do Osso Alveolar/genética , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Células Cultivadas , Masculino , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Tetraspanina 29/genética , Tetraspanina 29/metabolismo , Regulação para Cima
9.
Immunol Invest ; 46(6): 615-624, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28753407

RESUMO

Interleukin-29 (IL-29) is a cytokine belonging to the Type III interferon family. It was recently detected in the gingival crevicular fluid of periodontitis patients. However, the role of IL-29 in the pathogenesis of periodontal disease remains unknown. The aim of this study was to examine the effects of IL-29 on C-X-C motif chemokine ligand 10 (CXCL10) production in human oral epithelial cells. We measured CXCL10 production in TR146 cells, which is a human oral epithelial cell line, using an enzyme-linked immunosorbent assay. We used a Western blot analysis to detect IL-29 receptor expression and the phosphorylation levels of signal transduction molecules, including p38 mitogen-activated protein kinases (MAPK), signal transducer and activator of transcription 3 (STAT3), and nuclear factor (NF)- κB p65, in the TR146 cells. The TR146 cells expressed the IL-29 receptor. IL-29 induced CXCL10 production in the TR146 cells. IL-29 significantly enhanced CXCL10 production in tumor necrosis factor (TNF)-α-stimulated TR146 cells. The p38 MAPK, STAT3, and NF-κB pathways were found to be related to the IL-29-induced enhancement of CXCL10 production in TNF-α-stimulated TR146 cells. IL-29 promotes T helper 1-cell accumulation in periodontal lesions by inducing CXCL10 production in oral epithelial cells.


Assuntos
Quimiocina CXCL10/metabolismo , Células Epiteliais/metabolismo , Interleucinas/metabolismo , Linhagem Celular Tumoral , Humanos , Interferons , Mucosa Bucal/citologia , Fosforilação , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Cell Physiol Biochem ; 38(1): 153-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26765337

RESUMO

BACKGROUND/AIMS: IL-4 is a multifunctional cytokine that is related with the pathological conditions of periodontal disease. However, it is uncertain whether IL-4 could control T cells migration in periodontal lesions. The aim of this study was to examine the effects of IL-4 on CCL11, which is a Th2-type chemokine, and CCL20, which is related with Th17 cells migration, productions from human periodontal ligament cells (HPDLCs). METHODS: CCL20 and CCL11 productions from HPDLCs were monitored by ELISA. Western blot analysis was performed to detect phosphorylations of signal transduction molecules in HPDLCs. RESULTS: IL-1ß could induce both CCL11 and CCL20 productions in HPDLCs. IL-4 enhanced CCL11 productions from IL-1ß-stimulated HPDLCs, though IL-4 inhibited CCL20 production. Western blot analysis showed that protein kinase B (Akt) and signal transducer and activator of transcription (STAT)6 pathways were highly activated in IL-4/IL-1ß-stimulated HPDLCs. Akt and STAT6 inhibitors decreased CCL11 production, but enhanced CCL20 production in HPDLCs stimulated with IL-4 and IL-1ß. CONCLUSIONS: These results mean that IL-4 enhanced Th2 cells migration in periodontal lesion to induce CCL11 production from HPDLCs. On the other hand, IL-4 inhibits Th17 cells accumulation in periodontally diseased tissues to inhibit CCL20 production. Therefore, IL-4 is positively related with the pathogenesis of periodontal disease to control chemokine productions in periodontal lesions.


Assuntos
Quimiocina CCL11/metabolismo , Quimiocina CCL20/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-1beta/farmacologia , Interleucina-4/farmacologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Quimiocina CCL11/análise , Quimiocina CCL20/análise , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , NF-kappa B/metabolismo , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Fator de Transcrição STAT6/antagonistas & inibidores , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Th17/citologia , Células Th17/imunologia , Células Th17/metabolismo , Células Th2/citologia , Células Th2/imunologia , Células Th2/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Cell Biol Int ; 40(12): 1380-1385, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27743458

RESUMO

Alkannin, which is found in Alkanna tinctoria, a member of the borage family, is used as a food coloring. Alkannin has recently been reported to have certain biological functions, such as anti-microbial and anti-oxidant effects. It is known that CC chemokine receptor (CCR) 5-positive leukocytes contribute to alveolar bone resorption in periodontal lesions. The aim of this study was to examine whether alkannin inhibits the production of CC chemokine ligand (CCL) 3 and CCL5, which are CCR5 ligands, in human periodontal ligament cells (HPDLC). Interleukin (IL)-1ß induced CCL3 and CCL5 production in HPDLC. Alkannin inhibited IL-1ß-mediated CCL3 and CCL5 production in HPDLC in a dose-dependent manner. Moreover, we revealed that alkannin suppressed inhibitor of kappa B-α degradation in IL-1ß-stimulated HPDLC. In addition, a nuclear factor (NF)-κB inhibitor significantly inhibited CCL3 and CCL5 production in IL-1ß-stimulated HPDLC. These results demonstrate that alkannin inhibits CCR5 ligand production in IL-1ß-stimulated HPDLC by attenuating the NF-κB signaling pathway.


Assuntos
Quimiocina CCL3/biossíntese , Quimiocina CCL5/biossíntese , Naftoquinonas/farmacologia , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Células Cultivadas , Humanos , Proteínas I-kappa B/metabolismo , Interleucina-1beta/farmacologia , Ligantes , Ligamento Periodontal/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo
12.
Cell Physiol Biochem ; 33(2): 357-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24557363

RESUMO

BACKGROUND/AIMS: Genipin, the aglycon of geniposide found in gardenia fruit has long been considered for treatment of various diseases in traditional oriental medicine. Genipin has been used as a blue colorant in food industry. Genipin has recently been reported to have some pharmacological functions, such as antimicrobial, antitumor, and anti-inflammatory effects. The aim of this study was to examine whether genipin could modify CCL20 and IL-6, which are related to bone resorption in periodontal disease, expression in human periodontal ligament cells (HPDLCs). METHODS: CCL20 and IL-6 productions from HPDLCs were determined by ELISA. Western blot analysis was used for the detection of signal transduction molecules expressions in HPDLCs. RESULTS: Genipin prevented IL-1ß-mediated CCL20 and IL-6 production in HPDLCs. Moreover, genipin could suppress nuclear factor kappa B (NF-κB) p65, extracellular signalregulated kinase (ERK) and MAPK/ERK kinase (MEK) phosphorylations in IL-1ß-stimulated HPDLCs. NF-κB inhibitor and ERK inhibitor significantly inhibited IL-6 and CCL20 productions from IL-1ß-stimulated HPDLCs. CONCLUSIONS: These data provide a novel mechanism through which genipin could be used to provide direct benefits in periodontal disease to inhibit IL-6 and CCL20 productions in periodontal lesions.


Assuntos
Quimiocina CCL20/biossíntese , Colagogos e Coleréticos/farmacologia , Interleucina-1beta/farmacologia , Interleucina-6/biossíntese , Iridoides/farmacologia , Doenças Periodontais/metabolismo , Ligamento Periodontal/metabolismo , Células Cultivadas , Humanos , Interleucina-1beta/metabolismo , Doenças Periodontais/patologia , Ligamento Periodontal/patologia
13.
Biomedicines ; 12(8)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39200299

RESUMO

Surface pre-reacted glass-ionomer (S-PRG) is a new bioactive filler utilized for the restoration of decayed teeth by its ability to release six bioactive ions that prevent the adhesion of dental plaque to the tooth surface. Since ionic liquids are reported to facilitate transepithelial penetration, we reasoned that S-PRG applied to root caries could impact the osteoclasts (OCs) in the proximal alveolar bone. Therefore, this study aimed to investigate the effect of S-PRG eluate solution on RANKL-induced OC-genesis and mineral dissolution in vitro. Using RAW264.7 cells as OC precursor cells (OPCs), TRAP staining and pit formation assays were conducted to monitor OC-genesis and mineral dissolution, respectively, while OC-genesis-associated gene expression was measured using quantitative real-time PCR (qPCR). Expression of NFATc1, a master regulator of OC differentiation, and the phosphorylation of MAPK signaling molecules were measured using Western blotting. S-PRG eluate dilutions at 1/200 and 1/400 showed no cytotoxicity to RAW264.7 cells but did significantly suppress both OC-genesis and mineral dissolution. The same concentrations of S-PRG eluate downregulated the RANKL-mediated induction of OCSTAMP and CATK mRNAs, as well as the expression of NFATc1 protein and the phosphorylation of ERK, JNK, and p38. These results demonstrate that S-PRG eluate can downregulate RANKL-induced OC-genesis and mineral dissolution, suggesting that its application to root caries might prevent alveolar bone resorption.

14.
J Vis Exp ; (206)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38738893

RESUMO

The mechanical property, microhardness, is evaluated in dental enamel, dentin, and bone in oral disease models, including dental fluorosis and periodontitis. Micro-CT (µCT) provides 3D imaging information (volume and mineral density) and scanning electron microscopy (SEM) produces microstructure images (enamel prism and bone lacuna-canalicular). Complementarily to structural analysis by µCT and SEM, microhardness is one of the informative parameters to evaluate how structural changes alter mechanical properties. Despite being a useful parameter, studies on microhardness of alveolar bone in oral diseases are limited. To date, divergent microhardness measurement methods have been reported. Since microhardness values vary depending on the sample preparation (polishing and flat surface) and indentation sites, diverse protocols can cause discrepancies among studies. Standardization of the microhardness protocol is essential for consistent and accurate evaluation in oral disease models. In the present study, we demonstrate a standardized protocol for microhardness analysis in tooth and alveolar bone. Specimens used are as follows: for the dental fluorosis model, incisors were collected from mice treated with/without fluoride-containing water for 6 weeks; for ligature-induced periodontal bone resorption (L-PBR) model, alveolar bones with periodontal bone resorption were collected from mice ligated on the maxillary 2nd molar. At 2 weeks after the ligation, the maxilla was collected. Vickers hardness was analyzed in these specimens according to the standardized protocol. The protocol provides detailed materials and methods for resin embedding, serial polishing, and indentation sites for incisors and alveolar. To the best of our knowledge, this is the first standardized microhardness protocol to evaluate the mechanical properties of tooth and alveolar bone in rodent oral disease models.


Assuntos
Processo Alveolar , Modelos Animais de Doenças , Microtomografia por Raio-X , Animais , Camundongos , Processo Alveolar/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Fluorose Dentária/diagnóstico por imagem , Fluorose Dentária/patologia , Dureza , Incisivo/diagnóstico por imagem , Dente/diagnóstico por imagem
15.
Gels ; 10(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38920924

RESUMO

Osteoclast stimulatory transmembrane protein (OC-STAMP) plays a pivotal role in the promotion of cell fusion during osteoclast differentiation (osteoclastogenesis) in the context of pathogenic bone resorption. Thus, it is plausible that the suppression of OC-STAMP through a bioengineering approach could lead to the development of an effective treatment for inflammatory bone resorptive diseases with minimum side effects. Here, we synthesized two types of spermine-bearing (Spe) cationic glucan dendrimer (GD) gels (with or without C12) as carriers of short interfering RNA (siRNA) to silence OC-STAMP. The results showed that amphiphilic C12-GD-Spe gel was more efficient in silencing OC-STAMP than GD-Spe gel and that the mixture of anti-OC-STAMP siRNA/C12-GD-Spe significantly downregulated RANKL-induced osteoclastogenesis. Also, local injection of anti-OC-STAMP-siRNA/C12-GD-Spe could attenuate bone resorption induced in a mouse model of periodontitis. These results suggest that OC-STAMP is a promising target for the development of a novel bone regenerative therapy and that C12-GD-Spe gel provides a new nanocarrier platform of gene therapies for osteolytic disease.

16.
Microbiol Spectr ; : e0059924, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162507

RESUMO

The COVID-19 pandemic persists despite the availability of vaccines, and it is, therefore, crucial to develop new therapeutic and preventive approaches. In this study, we investigated the potential role of oral microbiome in SARS-CoV-2 infection. Using an in vitro SARS-CoV-2 pseudovirus infection assay, we found a potent inhibitory effect exerted by Porphyromonas gingivalis on SARS-CoV-2 infection mediated by known P. gingivalis compounds such as phosphoglycerol dihydroceramide (PGDHC) and gingipains as well as by unknown bacterial factors. We found that the gingipain-mediated inhibition of infection is likely due to cytotoxicity, whereas PGDHC inhibited virus infection by an unknown mechanism. Unidentified factors present in P. gingivalis supernatant inhibited SARS-CoV-2 likely via the fusion step of the virus life cycle. We addressed the role of other oral bacteria and found certain periodontal pathogens capable of inhibiting SARS-CoV-2 pseudovirus infection by inducing cytotoxicity on target cells. In the human oral cavity, we observed that the modulatory activity of oral microbial communities varied among individuals, in that some saliva-based cultures were capable of inhibiting while others were enhancing infection. These findings contribute to our understanding of the complex relationship between the oral microbiome and viral infections, offering potential avenues for innovative therapeutic strategies in combating COVID-19. IMPORTANCE: The oral microbiome is important in health and disease, and in this study, we addressed the potential role of the oral microbiome in COVID-19 infection. Our in vitro studies suggest that certain bacteria of the oral microbiome such as P. gingivalis produce compounds that could potentially inhibit SARS-CoV-2 infection. These findings elucidating the interactions between the oral microbiome and SARS-CoV-2 infection will be important in our understanding of COVID-19 pathogenesis and the development of innovative therapeutic and preventive strategies against COVID-19 infection.

17.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464164

RESUMO

The COVID-19 pandemic persists despite the availability of vaccines, and it is therefore crucial to develop new therapeutic and preventive approaches. In this study, we investigated the potential role of the oral microbiome in SARS-CoV-2 infection. Using an in vitro SARS-CoV-2 pseudovirus infection assay, we found a potent inhibitory effect exerted by Porphyromonas gingivalis on SARS-CoV-2 infection mediated by known P. gingivalis compounds such as phosphoglycerol dihydroceramide (PGDHC) and gingipains as well as by unknown bacterial factors. We found that the gingipain-mediated inhibition of infection is likely due to cytotoxicity, while PGDHC inhibited virus infection by an unknown mechanism. Unidentified factors present in P. gingivalis supernatant inhibited SARS-CoV-2 likely via the fusion step of the virus life cycle. We addressed the role of other oral bacteria and found certain periodontal pathogens capable of inhibiting SARS-CoV-2 pseudovirus infection by inducing cytotoxicity on target cells. In the human oral cavity, we observed the modulatory activity of oral microbial communities varied among individuals in that some saliva-based cultures were capable of inhibiting while others were enhancing infection. These findings contribute to our understanding of the complex relationship between the oral microbiome and viral infections, offering potential avenues for innovative therapeutic strategies in combating COVID-19.

18.
bioRxiv ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39282284

RESUMO

Mechanical stimulus to the multicellular bone unit (MBU) plays a key role in normal bone remodeling, whereas disuse osteoporosis, for example, represents loss of bone owing to lack of mechanical stresses. The analogy can be applied to a variety of pathogenic bone lytic complications, including periodontitis, in which local mechanical stress appears to be diminished. The activation of mechanosensitive Piezo1 Ca 2+ channel expressed by osteoblasts and osteocytes in the MBU elicits the osteogenic signals in those cells. However, since osteoclast (OC)-specific Piezo1-gene knockout mice showed no skeletal phenotype, it has been assumed that Piezo1 might not play any role in OC-mediated bone remodeling. Here, however, we showed that mechanical stimulation of Piezo1 expressed on preosteoclasts (pre-OCs) downmodulates OC formation and, hence, bone resorptive activity in periodontitis, accompanied by significantly reduced expression of NFATc1, a master transcription factor for RANKL-induced OC-genesis. We know that the Ca 2+ /calcineurin/NFAT axis upregulates NFATc1 activation in pre-OCs. Interestingly, Piezo1-elicited Ca 2+ influx did not affect NFATc1 expression. Instead, PP2A-mediated dephosphorylation of Akt downregulated NFATc1 in Piezo1-activated pre-OCs. However, systemic administration with Yoda1, a Piezo1 chemical agonist, or local injection of PP2A agonist, significantly downregulated the bone resorption induced in a mouse model of periodontitis, together with reduced numbers of TRAP + /phospho-Akt + pre-OCs in local bone. These results suggest that mechanosensing by Piezo1 expressed on pre-OCs can downmodulate the RANKL-induced OC-genesis via the PP2A/Akt-dephosphorylation pathway, but that such Piezo1-mediated downregulation of bone resorption is attenuated in periodontitis. Significance Statement: The mechanosensitive Ca 2+ channel Piezo1 plays important regulatory roles in a variety of cellular activities. RANKL-mediated OC-genesis requires permissive co-stimulatory signal from ITAM receptors, such as OSCAR and TREM2, to trigger the calcineurin/calmodulin signaling axis via Ca 2+ oscillation, thereby upregulating NFATc1 expression. Activation of Piezo1 remarkably suppressed RANKL-induced NFATc1 activation which, in turn, reduced OC-genesis. Such mechanical activation of Piezo1 expressed on pre-OCs induced intracellular Ca 2+ influx. Nonetheless, PP2A-mediated dephosphorylation of Akt, not the calcineurin/calmodulin pathway, suppressed NFATc1 in RANKL-elicited OC-genesis and resultant bone resorption, both in vitro and in vivo . These results indicate that mechanostress applied to pre-OCs can downregulate pathogenic OC-genesis and that Piezo1, as the mediator, is a novel molecular target for the development of anti-osteolytic therapies.

19.
Cell Physiol Biochem ; 31(6): 960-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23839108

RESUMO

BACKGROUND: CC chemokine ligand 11 (CCL11) is related to Th2 cells migration via CC chemokine receptor 3 (CCR3). Th2 cells are involved in the etiology of periodontal disease. However, how the infiltration of Th2 cells is controlled in periodontally diseased tissues is unknown. (-)-Epigallocatechin gallate (EGCG), the major catechin in green tea, has multiple beneficial effects, but the effects of EGCG on CCL11 production are uncertain. In this study, we investigated whether cytokines could induce CCL11 production in human gingival fibroblasts (HGFs). Moreover, we examined the effects of EGCG on CCL11 production in HGFs. METHODS AND RESULTS: ELISA analysis disclosed that interleukin (IL)-4 synergistically enhanced CCL11 production in IL-1ß or tumor necrosis factor (TNF)-α-stimulated HGFs. EGCG prevented IL-1ß/ IL-4 or TNF-α/IL-4-mediated CCL11 production in a concentration dependent manner. CCL11 production in HGFs was positively regulated by p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), and c-Jun N terminal kinase (JNK). Western blot analysis revealed that EGCG treatment prevented IL-1ß/IL-4 or TNF-α/IL-4-induced ERK and JNK activation in HGFs. CONCLUSIONS: These data provide that CCL11 production in HGFs could be associated with Th2 cells infiltration in periodontal lesions. Moreover, EGCG is useful for periodontitis treatment to inhibit CCL11 production.


Assuntos
Catequina/análogos & derivados , Quimiocina CCL11/metabolismo , Fibroblastos/efeitos dos fármacos , Gengiva/citologia , Interleucina-4/farmacologia , Antracenos/farmacologia , Catequina/farmacologia , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Flavonoides/farmacologia , Humanos , Imidazóis/farmacologia , Interleucina-1beta/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fosforilação , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células Th2/citologia , Células Th2/imunologia , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Cell Immunol ; 283(1-2): 8-11, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23850670

RESUMO

Viruses are related to the etiology of periodontitis. However, the role of viruses on Th17 cells infiltration in periodontitis lesions is unknown. Therefore, we examined the effects of TLR3 ligand on CCL20, which is related to Th17 cells migration, production in human gingival fibroblasts (HGFs). Polyinosinic-polycytidylic acid (Poly I:C), which is a TLR3 agonist, stimulation could moderately induce CCL20 production in HGFs. Poly I:C synergistically enhanced CCL20 expression from IL-1ß-stimulated HGFs. Inhibitors of p38 MAPK, extracellular signal-regulated kinase (ERK), c-Jun N terminal kinase (JNK), and NF-κB significantly inhibited CCL20 production in Poly I:C/IL-1ß-stimulated HGFs. Western blot analysis disclosed phosphorylation of p38 MAPK, JNK, and IκB-α were enhanced in Poly I:C/IL-1ß-treated HGFs. These data suggested that virus infection is related to Th17 cells migration in periodontitis lesion to induce CCL20 production in HGFs via TLR3. Therefore, our results indicated that virus might be important pathogen in periodontal disease.


Assuntos
Quimiocina CCL20/biossíntese , Fibroblastos/metabolismo , Gengiva/metabolismo , Receptor 3 Toll-Like/agonistas , Western Blotting , Células Cultivadas , Fibroblastos/imunologia , Gengiva/imunologia , Humanos , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Periodontite/imunologia , Periodontite/virologia , Poli I-C/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Células Th17/imunologia , Receptor 3 Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA