Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(49): e2302903120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015852

RESUMO

Uncontrolled type 2 immunity by type 2 helper T (Th2) cells causes intractable allergic diseases; however, whether the interaction of CD4+ T cells shapes the pathophysiology of allergic diseases remains unclear. We identified a subset of Th2 cells that produced the serine proteases granzyme A and B early in differentiation. Granzymes cleave protease-activated receptor (Par)-1 and induce phosphorylation of p38 mitogen-activated protein kinase (MAPK), resulting in the enhanced production of IL-5 and IL-13 in both mouse and human Th2 cells. Ubiquitin-specific protease 7 (USP7) regulates IL-4-induced phosphorylation of STAT3, resulting in granzyme production during Th2 cell differentiation. Genetic deletion of Usp7 or Gzma and pharmacological blockade of granzyme B ameliorated allergic airway inflammation. Furthermore, PAR-1+ and granzyme+ Th2 cells were colocalized in nasal polyps from patients with eosinophilic chronic rhinosinusitis. Thus, the USP7-STAT3-granzymes-Par-1 pathway is a potential therapeutic target for intractable allergic diseases.


Assuntos
Hipersensibilidade , Células Th2 , Humanos , Animais , Camundongos , Granzimas/genética , Granzimas/metabolismo , Interleucina-5/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Inflamação/metabolismo , Diferenciação Celular , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
2.
Development ; 141(22): 4343-53, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25344075

RESUMO

In the developing neocortex, neural precursor cells (NPCs) sequentially generate various neuronal subtypes in a defined order. Although the precise timing of the NPC fate switches is essential for determining the number of neurons of each subtype and for precisely generating the cortical layer structure, the molecular mechanisms underlying these switches are largely unknown. Here, we show that epigenetic regulation through Ring1B, an essential component of polycomb group (PcG) complex proteins, plays a key role in terminating NPC-mediated production of subcerebral projection neurons (SCPNs). The level of histone H3 residue K27 trimethylation at and Ring1B binding to the promoter of Fezf2, a fate determinant of SCPNs, increased in NPCs as Fezf2 expression decreased. Moreover, deletion of Ring1B in NPCs, but not in postmitotic neurons, prolonged the expression of Fezf2 and the generation of SCPNs that were positive for CTIP2. These results indicate that Ring1B mediates the timed termination of Fezf2 expression and thereby regulates the number of SCPNs.


Assuntos
Epigênese Genética/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neocórtex/embriologia , Neurogênese/fisiologia , Neurônios/fisiologia , Complexo Repressor Polycomb 1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Bromodesoxiuridina , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento/genética , Imuno-Histoquímica , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/genética , Neurônios/citologia , RNA Interferente Pequeno/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Supressoras de Tumor/metabolismo
3.
Proc Natl Acad Sci U S A ; 111(34): 12474-9, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25118276

RESUMO

Immunological memory has been regarded as a unique feature of the adaptive immune response mediated in an antigen-specific manner by T and B lymphocytes. However, natural killer (NK) cells and γδT cells, which traditionally are classified as innate immune cells, have been shown in recent studies to have hallmark features of memory cells. Invariant NKT cell (iNKT cell)-mediated antitumor effects indicate that iNKT cells are activated in vivo by vaccination with iNKT cell ligand-loaded CD1d(+) cells, but not by vaccination with unbound NKT cell ligand. In such models, it previously was thought that the numbers of IFN-γ-producing cells in the spleen returned to the basal level around 1 wk after the vaccination. In the current study, we demonstrate the surprising presence of effector memory-like iNKT cells in the lung. We found long-term antitumor activity in the lungs of mice was enhanced after vaccination with iNKT cell ligand-loaded dendritic cells. Further analyses showed that the KLRG1(+) (Killer cell lectin-like receptor subfamily G, member 1-positive) iNKT cells coexpressing CD49d and granzyme A persisted for several months and displayed a potent secondary response to cognate antigen. Finally, analyses of CDR3ß by RNA deep sequencing demonstrated that some particular KLRG1(+) iNKT-cell clones accumulated, suggesting the selection of certain T-cell receptor repertoires by an antigen. The current findings identifying effector memory-like KLRG1(+) iNKT cells in the lung could result in a paradigm shift regarding the basis of newly developed extrathymic iNKT cells and could contribute to the future development of antitumor immunotherapy by uniquely energizing iNKT cells.


Assuntos
Células T Matadoras Naturais/imunologia , Receptores Imunológicos/metabolismo , Animais , Sobrevivência Celular/imunologia , Regiões Determinantes de Complementaridade/genética , Células Dendríticas/imunologia , Galactosilceramidas/administração & dosagem , Galactosilceramidas/imunologia , Granzimas/metabolismo , Memória Imunológica , Integrina alfa4/metabolismo , Interferon gama/biossíntese , Lectinas Tipo C , Pulmão/citologia , Pulmão/imunologia , Ativação Linfocitária , Camundongos , Células T Matadoras Naturais/classificação , Células T Matadoras Naturais/citologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo
4.
J Immunol ; 190(11): 5609-19, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23630347

RESUMO

A key goal of vaccine immunotherapy is the generation of long-term memory CD8(+) T cells capable of mediating immune surveillance. We discovered a novel intercellular pathway governing the development of potent memory CD8(+) T cell responses against cell-associated Ags that is mediated through cross-presentation by XCR1(+) dendritic cells (DCs). Generation of CD8(+) memory T cells against tumor cells pulsed with an invariant NKT cell ligand depended on cross-talk between XCR1(+) and plasmacytoid DCs that was regulated by IFN-α/IFN-αR signals. IFN-α production by plasmacytoid DCs was stimulated by an OX40 signal from the invariant NKT cells, as well as an HMGB1 signal from the dying tumor cells. These findings reveal a previously unknown pathway of intercellular collaboration for the generation of tumor-specific CD8(+) memory T cells that can be exploited for strategic vaccination in the setting of tumor immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Comunicação Celular/imunologia , Células Dendríticas/imunologia , Memória Imunológica , Células T Matadoras Naturais/imunologia , Animais , Linhagem Celular Tumoral , Quimiotaxia/imunologia , Células Dendríticas/metabolismo , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Interleucina-12/biossíntese , Ligantes , Camundongos , Neoplasias/imunologia , Transdução de Sinais
5.
Blood ; 118(25): 6553-61, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22042701

RESUMO

Polycomb-group (PcG) proteins are essential regulators of hematopoietic stem cells (HSCs). In contrast to Bmi1, a component of Polycomb repressive complex 1 (PRC1), the role of PRC2 and its components in hematopoiesis remains elusive. Here we show that Ezh2, a core component of PRC2, is essential for fetal, but not adult, HSCs. Ezh2-deficient embryos died of anemia because of insufficient expansion of HSCs/progenitor cells and defective erythropoiesis in fetal liver. Deletion of Ezh2 in adult BM, however, did not significantly compromise hematopoiesis, except for lymphopoiesis. Of note, Ezh2-deficient fetal liver cells showed a drastic reduction in trimethylation of histone H3 at lysine 27 (H3K27me3) accompanied by derepression of a large cohort of genes, whereas on homing to BM, they acquired a high level of H3K27me3 and long-term repopulating capacity. Quantitative RT-PCR revealed that Ezh1, the gene encoding a backup enzyme, is highly expressed in HSCs/progenitor cells in BM compared with those in fetal liver, whereas Ezh2 is ubiquitously expressed. These findings suggest that Ezh1 complements Ezh2 in the BM, but not in the fetal liver, and reveal that the reinforcement of PcG-mediated gene silencing occurs during the transition from proliferative fetal HSCs to quiescent adult HSCs.


Assuntos
Células-Tronco Adultas/metabolismo , Células-Tronco Fetais/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Animais , Western Blotting , Medula Óssea/metabolismo , Transplante de Medula Óssea , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Feminino , Perfilação da Expressão Gênica , Hematopoese/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Fígado/citologia , Fígado/embriologia , Fígado/metabolismo , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Blood ; 118(9): 2443-53, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21753189

RESUMO

The histone acetyltransferases (HATs) of the MYST family include TIP60, HBO1, MOZ/MORF, and MOF and function in multisubunit protein complexes. Bromodomain-containing protein 1 (BRD1), also known as BRPF2, has been considered a subunit of the MOZ/MORF H3 HAT complex based on analogy with BRPF1 and BRPF3. However, its physiologic function remains obscure. Here we show that BRD1 forms a novel HAT complex with HBO1 and regulates erythropoiesis. Brd1-deficient embryos showed severe anemia because of impaired fetal liver erythropoiesis. Biochemical analyses revealed that BRD1 bridges HBO1 and its activator protein, ING4. Genome-wide mapping in erythroblasts demonstrated that BRD1 and HBO1 largely colocalize in the genome and target key developmental regulator genes. Of note, levels of global acetylation of histone H3 at lysine 14 (H3K14) were profoundly decreased in Brd1-deficient erythroblasts and depletion of Hbo1 similarly affected H3K14 acetylation. Impaired erythropoiesis in the absence of Brd1 accompanied reduced expression of key erythroid regulator genes, including Gata1, and was partially restored by forced expression of Gata1. Our findings suggest that the Hbo1-Brd1 complex is the major H3K14 HAT required for transcriptional activation of erythroid developmental regulator genes.


Assuntos
Eritropoese , Histona Acetiltransferases/fisiologia , Fígado/embriologia , Processamento de Proteína Pós-Traducional , Transativadores/fisiologia , Acetilação , Anemia/embriologia , Anemia/genética , Animais , Proteínas de Transporte/fisiologia , Dano ao DNA , Replicação do DNA , Morte Fetal/sangue , Morte Fetal/etiologia , Morte Fetal/genética , Fator de Transcrição GATA1/metabolismo , Genes Letais , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Humanos , Células K562 , Fígado/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos , Neoplasias/genética , Neoplasias/metabolismo , Mapeamento de Interação de Proteínas , RNA Interferente Pequeno/farmacologia , Transativadores/deficiência , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas Supressoras de Tumor/fisiologia
7.
Nature ; 450(7171): 908-12, 2007 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-17994007

RESUMO

DNA methyltransferase (cytosine-5) 1 (Dnmt1) is the principal enzyme responsible for maintenance of CpG methylation and is essential for the regulation of gene expression, silencing of parasitic DNA elements, genomic imprinting and embryogenesis. Dnmt1 is needed in S phase to methylate newly replicated CpGs occurring opposite methylated ones on the mother strand of the DNA, which is essential for the epigenetic inheritance of methylation patterns in the genome. Despite an intrinsic affinity of Dnmt1 for such hemi-methylated DNA, the molecular mechanisms that ensure the correct loading of Dnmt1 onto newly replicated DNA in vivo are not understood. The Np95 (also known as Uhrf1 and ICBP90) protein binds methylated CpG through its SET and RING finger-associated (SRA) domain. Here we show that localization of mouse Np95 to replicating heterochromatin is dependent on the presence of hemi-methylated DNA. Np95 forms complexes with Dnmt1 and mediates the loading of Dnmt1 to replicating heterochromatic regions. By using Np95-deficient embryonic stem cells and embryos, we show that Np95 is essential in vivo to maintain global and local DNA methylation and to repress transcription of retrotransposons and imprinted genes. The link between hemi-methylated DNA, Np95 and Dnmt1 thus establishes key steps of the mechanism for epigenetic inheritance of DNA methylation.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA/metabolismo , Epigênese Genética , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT , Ilhas de CpG/genética , DNA/química , DNA (Citosina-5-)-Metiltransferase 1 , Replicação do DNA , Células-Tronco Embrionárias/metabolismo , Impressão Genômica , Células HeLa , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Camundongos , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Estrutura Terciária de Proteína , Retroelementos/genética , Transcrição Gênica , Ubiquitina-Proteína Ligases
8.
Immunohorizons ; 7(1): 1-16, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36637516

RESUMO

NK cells are major effector cells involved in the elimination of early tumors and prevent metastasis. They often have an impaired function in patients with cancer. Preclinical studies have demonstrated NK cell activation as the adjunctive effect of invariant NKT (iNKT) cells. Activation of iNKT cells after administration of the glycolipid ligand α-galactosylceramide, loaded with CD1d-expressing human PBMC-derived APCs (APC/Gal), is an attractive cancer therapy to optimize the use of NK cells. However, the subsets of NK cells that are activated following iNKT cell activation as well as the period of NK cell activation remain unclear. In this study, we report that the granzyme B-expressing NK cell response in postoperative lung cancer patients was enhanced 49 d after administration of APC/Gal in a phase II study. We found maximum IFN-γ production on day 49 in 13 out of 27 APC/Gal-treated patients. On day 49, 14 out of 27 patients (51.9%) had higher IFN-γ production by iNKT cells (>6-fold higher than the baseline level). This increment significantly correlated with granzyme B-expressing NK cells. Although IFN-γ production was lower in patients in the nontreated group, we detected maximum IFN-γ production 12 mo after the resection of lung cancer (9 out of 29 patients [31%]). These findings suggest that elimination of cancer cells leads to increased NK cell function, which can be further enhanced by APC/Gal therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células T Matadoras Naturais , Humanos , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Granzimas , Ligantes , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/secundário , Células Matadoras Naturais
9.
iScience ; 23(6): 101238, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32629606

RESUMO

Although PD-L1 expression on tumor is related to the prognosis of immune checkpoint blockade (ICB) therapy, a recent study also demonstrated clinical benefits even in patients without PD-L1 expression. To understand the relationship between innate resistance and antitumor cytotoxic T lymphocyte (CTL) responses especially against neoantigens, the interaction between PD-L1+ or genetically PD-L1-deleted colorectal tumors and CTLs was assessed under an ICB therapy, finding the robust CTL activation in PD-L1-deleted tumor-bearing mice. Using antigen libraries based on immunogenomics, we identified three H2-Kb-restricted, somatic-mutated immunogenic neoantigens by utilizing enhanced CTLs responses due to PD-L1 deficiency. Furthermore, we identified three T cell receptor (TCR) repertoires relevant to the neoantigens, confirming the response of TCR-gene-transduced CTLs to parental tumor cells. Notably, neoantigen-pulsed dendritic cell (DC) therapy reversed the tumor tolerance. Thus, innate resistance of tumors determines their responsiveness to neoantigens and mixed neoantigen peptides may be useful in DC therapy against innate resistance type tumor.

10.
Mol Cell Biol ; 25(15): 6694-706, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16024804

RESUMO

The Polycomb group (PcG) gene products form multimeric protein complexes and contribute to anterior-posterior (A-P) specification via the transcriptional regulation of Hox cluster genes. The Drosophila polyhomeotic genes and their mammalian orthologues, Phc1, Phc2, and Phc3, encode nuclear proteins that are constituents of evolutionarily conserved protein complexes designated class II PcG complexes. In this study, we describe the generation and phenotypes of Phc2-deficient mice. We show posterior transformations of the axial skeleton and premature senescence of mouse embryonic fibroblasts associated with derepression of Hox cluster genes and Cdkn2a genes, respectively. Synergistic actions of a Phc2 mutation with Phc1 and Rnf110 mutations during A-P specification, coimmunoprecipitation of their products from embryonic extracts, and chromatin immunoprecipitation by anti-Phc2 monoclonal antibodies suggest that Hox repression by Phc2 is mediated through the class II PcG complexes, probably via direct binding to the Hox locus. The genetic interactions further reveal the functional overlap between Phc2 and Phc1 and a strict dose-dependent requirement during A-P specification and embryonic survival. Functional redundancy between Phc2 and Phc1 leads us to hypothesize that the overall level of polyhomeotic orthologues in nuclei is a parameter that is critical in enabling the class II PcG complexes to exert their molecular functions.


Assuntos
Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genes Homeobox , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , Animais , Padronização Corporal/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/metabolismo , Camundongos , Especificidade de Órgãos , Complexo Repressor Polycomb 1 , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Proteínas Repressoras/biossíntese , Fatores de Transcrição/genética
11.
Elife ; 62017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28304275

RESUMO

The ring finger protein PCGF6 (polycomb group ring finger 6) interacts with RING1A/B and E2F6 associated factors to form a non-canonical PRC1 (polycomb repressive complex 1) known as PCGF6-PRC1. Here, we demonstrate that PCGF6-PRC1 plays a role in repressing a subset of PRC1 target genes by recruiting RING1B and mediating downstream mono-ubiquitination of histone H2A. PCGF6-PRC1 bound loci are highly enriched for promoters of germ cell-related genes in mouse embryonic stem cells (ESCs). Conditional ablation of Pcgf6 in ESCs leads to robust de-repression of such germ cell-related genes, in turn affecting cell growth and viability. We also find a role for PCGF6 in pre- and peri-implantation mouse embryonic development. We further show that a heterodimer of the transcription factors MAX and MGA recruits PCGF6 to target loci. PCGF6 thus links sequence specific target recognition by the MAX/MGA complex to PRC1-dependent transcriptional silencing of germ cell-specific genes in pluripotent stem cells.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica , Complexo Repressor Polycomb 1/metabolismo , Animais , Inativação Gênica , Histonas/metabolismo , Camundongos , Ubiquitina-Proteína Ligases/metabolismo
12.
Int J Dev Biol ; 49(8): 939-51, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16281171

RESUMO

A cDNA library derived from the anterior neuroectoderm (ANE) of Xenopus late-gastrula embryos was systematically screened to isolate novel developmental regulatory genes involved in early brain development. We isolated 1,706 5 expressed sequence tags (ESTs), which were subdivided into 1,383 clusters and categorized into 19 classes based on predicted functions according to their similarities to other known genes. Of these, 757 clusters that were considered possible novel regulatory genes or unknown genes were subjected to expression pattern analysis using whole-mount in situ hybridization. Genes from 69 clusters (9%) were expressed in the ANE region. Based on their expression patterns and predicted amino acid sequences, 25 genes were selected for further analysis as novel Xenopus genes expressed broadly or region-specifically in the ANE. Eighteen genes were expressed in postulated patterning centers in the neuroectoderm, including the anterior (four genes) and lateral (nine genes) neural ridges, the midbrain-hindbrain boundary region (one gene) and the midline region of the neural plate (two genes), whereas 13 genes were expressed in the eye anlagen. Therefore, early regionalization of the neuroectoderm appears to occur mainly in those neural patterning centers and the eye anlagen. We determined the entire coding regions of p54nrb, Semaphorin 6D and a novel gene designated scribble-related protein 1 (SCRP1). Interestingly, Semaphorin 6D is expressed in the mesoderm with a dorsoventral gradient, as well as in the ectoderm at the gastrula stage, implying a new role for this protein in development other than in axon guidance.


Assuntos
Ectoderma/fisiologia , Etiquetas de Sequências Expressas , Biblioteca Gênica , Sistema Nervoso/embriologia , Sequência de Aminoácidos , Animais , DNA Complementar/isolamento & purificação , Embrião não Mamífero/fisiologia , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Semaforinas/biossíntese , Semaforinas/genética , Homologia de Sequência do Ácido Nucleico , Xenopus laevis
13.
Cancer Res ; 76(13): 3756-66, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27371739

RESUMO

Strategies to reprogram the tumor microenvironment are being explored to improve cancer immunotherapy. In one approach, we have targeted dendritic cells (DC) to improve their function with adjuvant vector cells (aAVC) that are engineered from NKT ligand-loaded CD1d(+) allogeneic cells transfected with tumor antigen mRNAs. Here, we report the finding that this approach also programs local immune responses by establishing tertiary lymphoid structures (TLS), which include expanded antigen-specific CD8(+) T-cell clones, mobilized DCs, and normalized tumor vasculature. aAVC therapy also expanded specific Vß-expressing antitumor T-cell clones, leading to the formation of long-term memory T cells. When combined with PD-1 blockade, aAVC infusion triggered regression of poorly immunogenic tumor cells that did not respond to PD-1 blockade alone, as well as expansion of antigen-specific CD8(+) T-cell clones in the tumor. The findings of this study help to inform a next-generation platform for the generation of efficacious cancer vaccines. Cancer Res; 76(13); 3756-66. ©2016 AACR.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Memória Imunológica/imunologia , Melanoma Experimental/terapia , Microambiente Tumoral/imunologia , Adjuvantes Imunológicos , Animais , Antígenos de Neoplasias , Feminino , Humanos , Imunoterapia , Ativação Linfocitária , Masculino , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
PLoS One ; 10(6): e0131477, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26121617

RESUMO

Cell-based therapies using genetically engineered lymphocytes expressing antigen-specific T cell receptors (TCRs) hold promise for the treatment of several types of cancers. Almost all studies using this modality have focused on transfer of TCR from CD8 cytotoxic T lymphocytes (CTLs). The transfer of TCR from innate lymphocytes to other lymphocytes has not been studied. In the current study, innate and adaptive lymphocytes were transfected with the human NKT cell-derived TCRα and ß chain mRNA (the Vα24 and Vß11 TCR chains). When primary T cells transfected with NKT cell-derived TCR were subsequently stimulated with the NKT ligand, α-galactosylceramide (α-GalCer), they secreted IFN-γ in a ligand-specific manner. Furthermore when γδT cells were transfected with NKT cell-derived TCR mRNA, they demonstrated enhanced proliferation, IFN-γ production and antitumor effects after α-GalCer stimulation as compared to parental γδT cells. Importantly, NKT cell TCR-transfected γδT cells responded to both NKT cell and γδT cell ligands, rendering them bi-potential innate lymphocytes. Because NKT cell receptors are unique and universal invariant receptors in humans, the TCR chains do not yield mispaired receptors with endogenous TCR α and ß chains after the transfection. The transfection of NKT cell TCR has the potential to be a new approach to tumor immunotherapy in patients with various types of cancer.


Assuntos
Glicolipídeos/metabolismo , Células T Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Clonagem Molecular , Citotoxicidade Imunológica , DNA/genética , Células HEK293 , Humanos , Células Jurkat , Células K562 , Ligantes , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transfecção
15.
Oncoimmunology ; 4(3): e995541, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25949922

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population with the ability to suppress immune responses and are currently classified into three distinct MDSC subsets: monocytic, granulocytic and non-monocytic, and non-granulocytic MDSCs. Although NK cells provide an important first-line defense against newly transformed cancer cells, it is unknown whether NK cells can regulate MDSC populations in the context of cancer. In this study, we initially found that the frequency of MDSCs in non-Hodgkin lymphoma (NHL) patients was increased and inversely correlated with that of NK cells, but not that of T cells. To investigate the regulation of MDSC subsets by NK cells, we used an EL4 murine lymphoma model and found the non-monocytic and non-granulocytic MDSC subset, i.e., Gr1+CD11b+Ly6GmedLy6Cmed MDSC, is increased after NK cell depletion. The MDSC population that expresses MHC class II, CD80, CD124, and CCR2 is regulated mainly by CD27+CD11b+NK cells. In addition, this MDSC subset produces some immunosuppressive cytokines, including IL-10 but not nitric oxide (NO) or arginase. We also examined two subsets of MDSCs (CD14+HLA-DR- and CD14- HLA-DR- MDSC) in NHL patients and found that higher IL-10-producing CD14+HLA-DR-MDSC subset can be seen in lymphoma patients with reduced NK cell frequency in peripheral blood. Our analyses of MDSCs in this study may enable a better understanding of how MDSCs manipulate the tumor microenvironment and are regulated by NK cells in patients with lymphoma.

16.
Cancer Res ; 73(1): 62-73, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23108144

RESUMO

Both innate and adaptive immunity are crucial for cancer immunosurveillance, but precise therapeutic equations to restore immunosurveillance in patients with cancer patients have yet to be developed. In murine models, α-galactosylceramide (α-GalCer)-loaded, tumor antigen-expressing syngeneic or allogeneic cells can act as cellular adjuvants, linking the innate and adaptive immune systems. In the current study, we established human artificial adjuvant vector cells (aAVC) consisting of human HEK293 embryonic kidney cells stably transfected with the natural killer T (NKT) immune cell receptor CD1d, loaded with the CD1d ligand α-GalCer and then transfected with antigen-encoding mRNA. When administered to mice or dogs, these aAVC-activated invariant NKT (iNKT) cells elicited antigen-specific T-cell responses with no adverse events. In parallel experiments, using NOD/SCID/IL-2rγc(null)-immunodeficient (hDC-NOG) mouse model, we also showed that the human melanoma antigen, MART-1, expressed by mRNA transfected aAVCs can be cross-presented to antigen-specific T cells by human dendritic cells. Antigen-specific T-cell responses elicited and expanded by aAVCs were verified as functional in tumor immunity. Our results support the clinical development of aAVCs to harness innate and adaptive immunity for effective cancer immunotherapy.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/transplante , Imunidade Adaptativa/imunologia , Animais , Apresentação Cruzada/imunologia , Cães , Citometria de Fluxo , Células HEK293 , Humanos , Imunidade Inata/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Transfecção
18.
Mol Cell Biol ; 31(2): 351-64, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21059868

RESUMO

The Polycomb group of proteins forms at least two distinct complexes designated the Polycomb repressive complex-1 (PRC1) and PRC2. These complexes cooperate to mediate transcriptional repression of their target genes, including the Hox gene cluster and the Cdkn2a genes. Mammalian Polycomb-like gene Pcl2/Mtf2 is expressed as four different isoforms, and the longest one contains a Tudor domain and two plant homeodomain (PHD) fingers. Pcl2 forms a complex with PRC2 and binds to Hox genes in a PRC2-dependent manner. We show that Pcl2 is a functional component of PRC2 and is required for PRC2-mediated Hox repression. Pcl2, however, exhibits a profound synergistic effect on PRC1-mediated Hox repression, which is not accompanied by major alterations in the local trimethylation of histone H3 at lysine 27 (H3K27me3) or PRC1 deposition. Pcl2 therefore functions in collaboration with both PRC2 and PRC1 to repress Hox gene expression during axial development. Paradoxically, in embryonic fibroblasts, Pcl2 is shown to activate the expression of Cdkn2a and promote cellular senescence, presumably by suppressing the catalytic activity of PRC2 locally. Taken together, we show that Pcl2 differentially regulates Polycomb-mediated repression of Hox and Cdkn2a genes. We therefore propose a novel role for Pcl2 to modify functional engagement of PRC2 and PRC1, which could be modulated by sensing cellular circumstances.


Assuntos
Genes Homeobox , Genes p16 , Histona-Lisina N-Metiltransferase/metabolismo , Família Multigênica , Isoformas de Proteínas/metabolismo , Proteínas Repressoras/metabolismo , Animais , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/fisiologia , Histona-Lisina N-Metiltransferase/genética , Humanos , Camundongos , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/genética
19.
Neuron ; 63(5): 600-13, 2009 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-19755104

RESUMO

During neocortical development, neural precursor cells (NPCs, or neural stem cells) produce neurons first and astrocytes later. Although the timing of the fate switch from neurogenic to astrogenic is critical for determining the number of neurons, the mechanisms are not fully understood. Here, we show that the polycomb group complex (PcG) restricts neurogenic competence of NPCs and promotes the transition of NPC fate from neurogenic to astrogenic. Inactivation of PcG by knockout of the Ring1B or Ezh2 gene or Eed knockdown prolonged the neurogenic phase of NPCs and delayed the onset of the astrogenic phase. Moreover, PcG was found to repress the promoter of the proneural gene neurogenin1 in a developmental-stage-dependent manner. These results demonstrate a role of PcG: the temporal regulation of NPC fate.


Assuntos
Astrócitos/fisiologia , Diferenciação Celular/fisiologia , Neocórtex/fisiologia , Neurônios/fisiologia , Proteínas Repressoras/metabolismo , Células-Tronco/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Técnicas de Silenciamento de Genes , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Camundongos , Camundongos Knockout , Neocórtex/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Complexo Repressor Polycomb 1 , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais , Fatores de Tempo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Wnt/metabolismo
20.
Development ; 134(3): 579-90, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17215307

RESUMO

The product of the Scmh1 gene, a mammalian homolog of Drosophila Sex comb on midleg, is a constituent of the mammalian Polycomb repressive complexes 1 (Prc1). We have identified Scmh1 as an indispensable component of the Prc1. During progression through pachytene, Scmh1 was shown to be excluded from the XY body at late pachytene, together with other Prc1 components such as Phc1, Phc2, Rnf110 (Pcgf2), Bmi1 and Cbx2. We have identified the role of Scmh1 in mediating the survival of late pachytene spermatocytes. Apoptotic elimination of Scmh1(-/-) spermatocytes is accompanied by the preceding failure of several specific chromatin modifications at the XY body, whereas synapsis of homologous autosomes is not affected. It is therefore suggested that Scmh1 is involved in regulating the sequential changes in chromatin modifications at the XY chromatin domain of the pachytene spermatocytes. Restoration of defects in Scmh1(-/-) spermatocytes by Phc2 mutation indicates that Scmh1 exerts its molecular functions via its interaction with Prc1. Therefore, for the first time, we are able to indicate a functional involvement of Prc1 during the meiotic prophase of male germ cells and a regulatory role of Scmh1 for Prc1, which involves sex chromosomes.


Assuntos
Proteínas Repressoras/metabolismo , Espermatócitos/metabolismo , Animais , Apoptose , Sequência de Bases , Primers do DNA/genética , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Complexo Repressor Polycomb 1 , Proteínas do Grupo Polycomb , Proteínas Repressoras/genética , Espermatócitos/citologia , Espermatogênese/genética , Espermatogênese/fisiologia , Frações Subcelulares/metabolismo , Cromossomo X/metabolismo , Cromossomo Y/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA