Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Mol Biol Evol ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850168

RESUMO

We developed phyloBARCODER (https://github.com/jun-inoue/phyloBARCODER), a new web tool that can identify short DNA sequences to the species level using metabarcoding. phyloBARCODER estimates phylogenetic trees based on uploaded anonymous DNA sequences and reference sequences from databases. Without such phylogenetic contexts, alternative, similarity-based methods independently identify species names and anonymous sequences of the same group by pairwise comparisons between queries and database sequences, with the caveat that they must match exactly or very closely. By putting metabarcoding sequences into a phylogenetic context, phyloBARCODER accurately identifies (1) species or classification of query sequences and (2) anonymous sequences associated with the same species or even with populations of query sequences, with clear and accurate explanations. Version 1 of phyloBARCODER stores a database comprising all eukaryotic mitochondrial gene sequences. Moreover, by uploading their own databases, phyloBARCODER users can conduct species identification specialized for sequences obtained from a local geographic region or those of non-mitochondrial genes, e.g., ITS or rbcL.

2.
Mol Biol Evol ; 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36219871

RESUMO

Climate change threatens the survival of coral reefs on a global scale, primarily through mass bleaching and mortality as a result of marine heatwaves. While these short-term effects are clear, predicting the fate of coral reefs over the coming century is a major challenge. One way to understand the longer-term effects of rapid climate change is to examine the response of coral populations to past climate shifts. Coastal and shallow-water marine ecosystems such as coral reefs have been reshaped many times by sea-level changes during the Pleistocene, yet, few studies have directly linked this with its consequences on population demographics, dispersal, and adaptation. Here we use powerful analytical techniques, afforded by haplotype phased whole-genomes, to establish such links for the reef-building coral, Acropora digitifera. We show that three genetically distinct populations are present in northwestern Australia, and that their rapid divergence since the last glacial maximum (LGM) can be explained by a combination of founder-effects and restricted gene flow. Signatures of selective sweeps, too strong to be explained by demographic history, are present in all three populations and overlap with genes that show different patterns of functional enrichment between inshore and offshore habitats. In contrast to rapid divergence in the host, we find that photosymbiont communities are largely undifferentiated between corals from all three locations, spanning almost 1000 km, indicating that selection on host genes and not acquisition of novel symbionts, has been the primary driver of adaptation for this species in northwestern Australia.

3.
Proc Biol Sci ; 290(1995): 20230026, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36987647

RESUMO

Coral reefs have the highest biodiversity of all marine ecosystems in tropical and subtropical oceans. However, scleractinian corals, keystone organisms of reef productivity, are facing a crisis due to climate change and anthropogenic activities. A broad survey of reef-building corals is essential for worldwide reef preservation. To this end, direct observations made by coral-specialist divers might be supported by another robust method. We improved a recently devised environmental DNA (eDNA) metabarcoding method to identify more than 43 scleractinian genera by sampling 2 l of surface seawater above reefs. Together with direct observations by divers, we assessed the utility of eDNA at 63 locations spanning approximately 250 km near Okinawa Island. Slopes of these islands are populated by diverse coral genera, whereas shallow 'moats' sustain fewer and less varied coral taxa. Major genera recorded by divers included Acropora, Pocillopora, Porites and Montipora, the presence of which was confirmed by eDNA analyses. In addition, eDNA identified more genera than direct observations and documented the presence of previously unrecorded species. This scleractinian coral-specific eDNA method promises to be a powerful tool to survey coral reefs broadly, deeply and robustly.


Assuntos
Antozoários , DNA Ambiental , Animais , Antozoários/genética , Ecossistema , Código de Barras de DNA Taxonômico , Recifes de Corais
4.
Nature ; 544(7649): 231-234, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28379940

RESUMO

The crown-of-thorns starfish (COTS, the Acanthaster planci species group) is a highly fecund predator of reef-building corals throughout the Indo-Pacific region. COTS population outbreaks cause substantial loss of coral cover, diminishing the integrity and resilience of reef ecosystems. Here we sequenced genomes of COTS from the Great Barrier Reef, Australia and Okinawa, Japan to identify gene products that underlie species-specific communication and could potentially be used in biocontrol strategies. We focused on water-borne chemical plumes released from aggregating COTS, which make the normally sedentary starfish become highly active. Peptide sequences detected in these plumes by mass spectrometry are encoded in the COTS genome and expressed in external tissues. The exoproteome released by aggregating COTS consists largely of signalling factors and hydrolytic enzymes, and includes an expanded and rapidly evolving set of starfish-specific ependymin-related proteins. These secreted proteins may be detected by members of a large family of olfactory-receptor-like G-protein-coupled receptors that are expressed externally, sometimes in a sex-specific manner. This study provides insights into COTS-specific communication that may guide the generation of peptide mimetics for use on reefs with COTS outbreaks.


Assuntos
Recifes de Corais , Genoma/genética , Controle Biológico de Vetores , Estrelas-do-Mar/genética , Animais , Antozoários/parasitologia , Austrália , Biomimética , Feminino , Oceano Índico , Japão , Masculino , Espectrometria de Massas , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Oceano Pacífico , Proteoma/análise , Proteoma/metabolismo , Fatores Sexuais , Especificidade da Espécie , Estrelas-do-Mar/anatomia & histologia , Estrelas-do-Mar/química , Estrelas-do-Mar/enzimologia , Transcriptoma
5.
Mol Biol Evol ; 38(1): 16-30, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32877528

RESUMO

The genus Acropora comprises the most diverse and abundant scleractinian corals (Anthozoa, Cnidaria) in coral reefs, the most diverse marine ecosystems on Earth. However, the genetic basis for the success and wide distribution of Acropora are unknown. Here, we sequenced complete genomes of 15 Acropora species and 3 other acroporid taxa belonging to the genera Montipora and Astreopora to examine genomic novelties that explain their evolutionary success. We successfully obtained reasonable draft genomes of all 18 species. Molecular dating indicates that the Acropora ancestor survived warm periods without sea ice from the mid or late Cretaceous to the Early Eocene and that diversification of Acropora may have been enhanced by subsequent cooling periods. In general, the scleractinian gene repertoire is highly conserved; however, coral- or cnidarian-specific possible stress response genes are tandemly duplicated in Acropora. Enzymes that cleave dimethlysulfonioproprionate into dimethyl sulfide, which promotes cloud formation and combats greenhouse gasses, are the most duplicated genes in the Acropora ancestor. These may have been acquired by horizontal gene transfer from algal symbionts belonging to the family Symbiodiniaceae, or from coccolithophores, suggesting that although functions of this enzyme in Acropora are unclear, Acropora may have survived warmer marine environments in the past by enhancing cloud formation. In addition, possible antimicrobial peptides and symbiosis-related genes are under positive selection in Acropora, perhaps enabling adaptation to diverse environments. Our results suggest unique Acropora adaptations to ancient, warm marine environments and provide insights into its capacity to adjust to rising seawater temperatures.


Assuntos
Adaptação Biológica , Antozoários/genética , Evolução Biológica , Mudança Climática , Fósseis , Animais , Genoma
6.
Mol Ecol ; 31(22): 5813-5830, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36168983

RESUMO

The endosymbiosis between most corals and their photosynthetic dinoflagellate partners begins early in the host life history, when corals are larvae or juvenile polyps. The capacity of coral larvae to buffer climate-induced stress while in the process of symbiont acquisition could come with physiological trade-offs that alter behaviour, development, settlement and survivorship. Here we examined the joint effects of thermal stress and symbiosis onset on colonization dynamics, survival, metamorphosis and host gene expression of Acropora digitifera larvae. We found that thermal stress decreased symbiont colonization of hosts by 50% and symbiont density by 98.5% over 2 weeks. Temperature and colonization also influenced larval survival and metamorphosis in an additive manner, where colonized larvae fared worse or prematurely metamorphosed more often than noncolonized larvae under thermal stress. Transcriptomic responses to colonization and thermal stress treatments were largely independent, while the interaction of these treatments revealed contrasting expression profiles of genes that function in the stress response, immunity, inflammation and cell cycle regulation. The combined treatment either cancelled or lowered the magnitude of expression of heat-stress responsive genes in the presence of symbionts, revealing a physiological cost to acquiring symbionts at the larval stage with elevated temperatures. In addition, host immune suppression, a hallmark of symbiosis onset under ambient temperature, turned to immune activation under heat stress. Thus, by integrating the physical environment and biotic pressures that mediate presettlement event in corals, our results suggest that colonization may hinder larval survival and recruitment under projected climate scenarios.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/fisiologia , Simbiose/genética , Recifes de Corais , Larva/genética , Dinoflagellida/genética , Resposta ao Choque Térmico/genética
7.
Mol Ecol ; 31(20): 5270-5284, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36082782

RESUMO

Understanding the structure and connectivity of coral populations is fundamental for developing marine conservation policies, especially in patchy environments such as archipelagos. The Nansei Islands, extending more than 1000 km in southwestern Japan, are characterized by high levels of biodiversity and endemism, supported by coral reefs, which make this region ideal for assessing genetic attributes of coral populations. In this study, we conducted population genomic analyses based on genome-wide, single-nucleotide polymorphisms (SNPs) of Acropora digitifera, a common species in the Nansei Islands. By merging newly obtained genome resequencing data with previously published data, we identified more than 4 million genome-wide SNPs in 303 colonies collected at 22 locations, with sequencing coverage ranging from 3.91× to 27.41×. While population structure analyses revealed genetic similarities between the southernmost and northernmost locations, separated by >1000 km, several subpopulations in intermediate locations suggested limited genetic admixture, indicating conflicting migration tendencies in the Nansei Islands. Although migration networks revealed a general tendency of northward migration along the Kuroshio Current, a substantial amount of southward migration was also detected, indicating important contributions of minor ocean currents to coral larval dispersal. Moreover, heterogeneity in the transition of effective population sizes among locations suggests different histories for individual subpopulations. The unexpected complexity of both past and present population dynamics in the Nansei Islands implies that heterogeneity of ocean currents and local environments, past and present, have influenced the population structure of this species, and similar unexpected population complexities may be expected for other marine species with similar reproductive modes.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Genômica , Ilhas , Japão
8.
BMC Genomics ; 21(1): 732, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087060

RESUMO

BACKGROUND: Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and fertilization. RESULTS: 1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023 genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans, including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT database were also observed among upregulated genes in premature / mature ovaries and mature testes. CONCLUSIONS: Our findings show that scleractinian gametogenesis shares many molecular characteristics with that of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ cell markers that can be used in coral aquaculture and ecological studies.


Assuntos
Antozoários , Transcriptoma , Animais , Antozoários/genética , Feminino , Gametogênese/genética , Gônadas , Humanos , Masculino , Motilidade dos Espermatozoides
9.
J Struct Biol ; 203(3): 219-229, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29859330

RESUMO

To construct calcium carbonate skeletons of sophisticated architecture, scleractinian corals secrete an extracellular skeletal organic matrix (SOM) from aboral ectodermal cells. The SOM, which is composed of proteins, saccharides, and lipids, performs functions critical for skeleton formation. Even though polysaccharides constitute the major component of the SOM, its contribution to coral skeleton formation is poorly understood. To this end, we analyzed the SOM of the massive colonial coral, Porites australiensis, the skeleton of which has drawn great research interest because it records environmental conditions throughout the life of the colony. The coral skeleton was extensively cleaned, decalcified with acetic acid, and organic fractions were separated based on solubility. These fractions were analyzed using various techniques, including SDS-PAGE, FT-IR, in vitro crystallization, CHNS analysis, chromatography analysis of monosaccharide and enzyme-linked lectin assay (ELLA). We confirmed the acidic nature of SOM and the presence of sulphate, which is thought to initiate CaCO3 crystallization. In order to analyze glycan structures, we performed ELLA on the soluble SOM for the first time and found that it exhibits strong specificity to Datura stramonium lectin (DSL). Furthermore, using biotinylated DSL with anti-biotin antibody conjugated to nanogold, in situ localization of DSL-binding polysaccharides in the P. australiensis skeleton was performed. Signals were distributed on the surfaces of fiber-like crystals of the skeleton, suggesting that polysaccharides may modulate crystal shape. Our study emphasizes the importance of sugar moieties in biomineralization of scleractinian corals.


Assuntos
Antozoários/química , Calcificação Fisiológica , Proteínas/química , Esqueleto/química , Animais , Antozoários/ultraestrutura , Carbonato de Cálcio/química , Cristalização , Matriz Extracelular/química , Matriz Extracelular/ultraestrutura , Microscopia Eletrônica de Varredura , Esqueleto/ultraestrutura
10.
BMC Genomics ; 19(1): 458, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29898658

RESUMO

BACKGROUND: The marine dinoflagellate, Symbiodinium, is a well-known photosynthetic partner for coral and other diverse, non-photosynthetic hosts in subtropical and tropical shallows, where it comprises an essential component of marine ecosystems. Using molecular phylogenetics, the genus Symbiodinium has been classified into nine major clades, A-I, and one of the reported differences among phenotypes is their capacity to synthesize mycosporine-like amino acids (MAAs), which absorb UV radiation. However, the genetic basis for this difference in synthetic capacity is unknown. To understand genetics underlying Symbiodinium diversity, we report two draft genomes, one from clade A, presumed to have been the earliest branching clade, and the other from clade C, in the terminal branch. RESULTS: The nuclear genome of Symbiodinium clade A (SymA) has more gene families than that of clade C, with larger numbers of organelle-related genes, including mitochondrial transcription terminal factor (mTERF) and Rubisco. While clade C (SymC) has fewer gene families, it displays specific expansions of repeat domain-containing genes, such as leucine-rich repeats (LRRs) and retrovirus-related dUTPases. Interestingly, the SymA genome encodes a gene cluster for MAA biosynthesis, potentially transferred from an endosymbiotic red alga (probably of bacterial origin), while SymC has completely lost these genes. CONCLUSIONS: Our analysis demonstrates that SymC appears to have evolved by losing gene families, such as the MAA biosynthesis gene cluster. In contrast to the conservation of genes related to photosynthetic ability, the terminal clade has suffered more gene family losses than other clades, suggesting a possible adaptation to symbiosis. Overall, this study implies that Symbiodinium ecology drives acquisition and loss of gene families.


Assuntos
Dinoflagellida/genética , Evolução Molecular , Genoma , Aminoácidos/biossíntese , Cicloexanóis/metabolismo , Dinoflagellida/classificação , Deleção de Genes , Genes , Família Multigênica , Filogenia , Sequências Repetitivas de Aminoácidos , Simbiose/genética
11.
BMC Genomics ; 19(1): 733, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30290758

RESUMO

BACKGROUND: The striped catfish, Pangasianodon hypophthalmus, is a freshwater and benthopelagic fish common in the Mekong River delta. Catfish constitute a valuable source of dietary protein. Therefore, they are cultured worldwide, and P. hypophthalmus is a food staple in the Mekong area. However, genetic information about the culture stock, is unavailable for breeding improvement, although genetics of the channel catfish, Ictalurus punctatus, has been reported. To acquire genome sequence data as a useful resource for marker-assisted breeding, we decoded a draft genome of P. hypophthalmus and performed comparative analyses. RESULTS: Using the Illumina platform, we obtained both nuclear and mitochondrial DNA sequences. Molecular phylogeny using the mitochondrial genome confirmed that P. hypophthalmus is a member of the family Pangasiidae and is nested within a clade including the families Cranoglanididae and Ictaluridae. The nuclear genome was estimated at approximately 700 Mb, assembled into 568 scaffolds with an N50 of 14.29 Mbp, and was estimated to contain ~ 28,600 protein-coding genes, comparable to those of channel catfish and zebrafish. Interestingly, zebrafish produce gadusol, but genes for biosynthesis of this sunscreen compound have been lost from catfish genomes. The differences in gene contents between these two catfishes were found in genes for vitamin D-binding protein and cytosolic phospholipase A2, which have lost only in channel catfish. The Hox cluster in catfish genomes comprised seven paralogous groups, similar to that of zebrafish, and comparative analysis clarified catfish lineage-specific losses of A5a, B10a, and A11a. Genes for insulin-like growth factor (IGF) signaling were conserved between the two catfish genomes. In addition to identification of MHC class I and sex determination-related gene loci, the hypothetical chromosomes by comparison with the channel catfish demonstrated the usefulness of the striped catfish genome as a marker resource. CONCLUSIONS: We developed genomic resources for the striped catfish. Possible conservation of genes for development and marker candidates were confirmed by comparing the assembled genome to that of a model fish, Danio rerio, and to channel catfish. Since the catfish genomic constituent resembles that of zebrafish, it is likely that zebrafish data for gene functions is applicable to striped catfish as well.


Assuntos
Aquicultura , Peixes-Gato/crescimento & desenvolvimento , Peixes-Gato/genética , Genômica , Animais , Anotação de Sequência Molecular , Processos de Determinação Sexual/genética
12.
Mol Phylogenet Evol ; 124: 172-180, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29526805

RESUMO

The Pelagia is a recently delineated group of fishes, comprising fifteen families formerly placed in six perciform suborders. The Pelagia was lately recognized as it encompasses huge morphological diversity and only in the last few years have large-scale molecular phylogenetic studies been undertaken that could unite such morphologically disparate lineages. Due to the recent erection of Pelagia, the composition of the taxon is not entirely certain. Five families of the former perciform suborder Stromateoidei have been identified as pelagians. However, the sixth stromateoid subfamily Amarsipidae is a rare monotypic family that has distinctive meristic and morphological characteristics from that of other stromateoids such as the lack of a pharyngeal sac. We examine molecular data generated from the sole species in Amarsipidae, Amarsipus carlsbergi, and demonstrate that it is clearly nested within Pelagia. As with two previous studies that have the breadth of sampling to evaluate pelagian intra-relationships, we find high support for monophyly of most family-level taxonomic units but statistical support for early-branching nodes in the pelagian tree is very low. We conduct the first analyses of Pelagia incorporating the multispecies coalescent and are limited by a high degree of missing loci, or, incomplete taxon sampling. The high degree of missing data across a complete sampling of pelagian lineages along with the deep time scale and rapid radiation of the lineage contribute to poor resolution of early-branching relationships within Pelagia that cannot be resolved with current data sets. Currently available data are either mitochondrial genomes or a super matrix of relatively few loci with a high degree of missing data. A new and independent dataset of numerous phylogenetic loci derived from high-throughput sequencing technology may reduce uncertainty within the Pelagia and provide insights into this adaptive radiation.


Assuntos
Peixes/classificação , Peixes/genética , Loci Gênicos , Filogenia , Animais , Sequência de Bases , Funções Verossimilhança , Alinhamento de Sequência , Análise de Sequência de DNA
14.
Mol Phylogenet Evol ; 109: 337-342, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28185947

RESUMO

Fishes are widely diverse in shape and body size and can quite rapidly undergo these changes. Consequently, some relationships are not clearly resolved with morphological analyses. In the case of fishes of small body size, informative characteristics can be absent due to simplification of body structures. The Parabrotulidae, a small family of diminutive body size consisting of two genera and three species has most recently been classified as either a perciform within the suborder Zoarcoidei or an ophidiiform. Classification of parabrotulids as ophidiiforms has become predominant; however the Parabrotulidae has not yet been investigated in a molecular phylogenetic framework. We examine molecular data from ten genetic loci to more specifically place the Parabrotulidae within the fish tree of life. In a hypothesis testing framework, the Parabrotulidae as a zoarcoid taxon is rejected. Previous identity with zoarcoids due to the one fin ray for each vertebra being present, a characteristic for the Zoarcidae, appears to be an example of convergence. Our results indicate that parabrotulids are viviparous ophidiiforms within the family Bythitidae.


Assuntos
Evolução Biológica , Peixes/classificação , Animais , Tamanho Corporal , Feminino , Peixes/genética , Masculino , Tipagem Molecular , Perciformes/classificação , Perciformes/genética , Filogenia , Análise de Sequência de DNA
15.
Nature ; 476(7360): 320-3, 2011 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-21785439

RESUMO

Despite the enormous ecological and economic importance of coral reefs, the keystone organisms in their establishment, the scleractinian corals, increasingly face a range of anthropogenic challenges including ocean acidification and seawater temperature rise. To understand better the molecular mechanisms underlying coral biology, here we decoded the approximately 420-megabase genome of Acropora digitifera using next-generation sequencing technology. This genome contains approximately 23,700 gene models. Molecular phylogenetics indicate that the coral and the sea anemone Nematostella vectensis diverged approximately 500 million years ago, considerably earlier than the time over which modern corals are represented in the fossil record (∼240 million years ago). Despite the long evolutionary history of the endosymbiosis, no evidence was found for horizontal transfer of genes from symbiont to host. However, unlike several other corals, Acropora seems to lack an enzyme essential for cysteine biosynthesis, implying dependency of this coral on its symbionts for this amino acid. Corals inhabit environments where they are frequently exposed to high levels of solar radiation, and analysis of the Acropora genome data indicates that the coral host can independently carry out de novo synthesis of mycosporine-like amino acids, which are potent ultraviolet-protective compounds. In addition, the coral innate immunity repertoire is notably more complex than that of the sea anemone, indicating that some of these genes may have roles in symbiosis or coloniality. A number of genes with putative roles in calcification were identified, and several of these are restricted to corals. The coral genome provides a platform for understanding the molecular basis of symbiosis and responses to environmental changes.


Assuntos
Antozoários/genética , Antozoários/fisiologia , Mudança Climática , Genoma/genética , Animais , Antozoários/química , Antozoários/imunologia , Recifes de Corais , Cicloexilaminas , Cistationina beta-Sintase/genética , Cisteína/biossíntese , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Fósseis , Glicina/análogos & derivados , Glicina/biossíntese , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/imunologia , Simbiose/genética , Raios Ultravioleta
16.
Bioessays ; 36(12): 1185-94, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25205353

RESUMO

Ecological developmental biology (eco-devo) explores the mechanistic relationships between the processes of individual development and environmental factors. Recent studies imply that some of these relationships have deep evolutionary origins, and may even pre-date the divergences of the simplest extant animals, including cnidarians and sponges. Development of these early diverging metazoans is often sensitive to environmental factors, and these interactions occur in the context of conserved signaling pathways and mechanisms of tissue homeostasis whose detailed molecular logic remain elusive. Efficient methods for transgenesis in cnidarians together with the ease of experimental manipulation in cnidarians and sponges make them ideal models for understanding causal relationships between environmental factors and developmental mechanisms. Here, we identify major questions at the interface between animal evolution and development and outline a road map for research aimed at identifying the mechanisms that link environmental factors to developmental mechanisms in early diverging metazoans. Also watch the Video Abstract.


Assuntos
Evolução Biológica , Cnidários/crescimento & desenvolvimento , Interação Gene-Ambiente , Estágios do Ciclo de Vida/genética , Poríferos/crescimento & desenvolvimento , Animais , Cnidários/classificação , Cnidários/genética , Ecossistema , Extinção Biológica , Regulação da Expressão Gênica no Desenvolvimento , Metamorfose Biológica/genética , Filogenia , Poríferos/classificação , Poríferos/genética , Transdução de Sinais
17.
Mol Biol Evol ; 30(1): 167-76, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22936719

RESUMO

Innate immunity in corals is of special interest not only in the context of self-defense but also in relation to the establishment and collapse of their obligate symbiosis with dinoflagellates of the genus Symbiodinium. In innate immunity system of vertebrates, approximately 20 tripartite nucleotide oligomerization domain (NOD)-like receptor proteins that are defined by the presence of a NAIP, CIIA, HET-E and TP1 (NACHT) domain, a C-terminal leucine-rich repeat (LRR) domain, and one of three types of N-terminal effector domain, are known to function as the primary intracellular pattern recognition molecules. Surveying the coral genome revealed not only a larger number of NACHT- and related domain nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC)-encoding loci (~500) than in other metazoans but also surprising diversity of domain combinations among the coral NACHT/NB-ARC-containing proteins; N-terminal effector domains included the apoptosis-related domains caspase recruitment domain (CARD), death effector domain (DED), and Death, and C-terminal repeat domains included LRRs, tetratricopeptide repeats, ankyrin repeats, and WD40 repeats. Many of the predicted coral proteins that contain a NACHT/NB-ARC domain also contain a glycosyl transferase group 1 domain, a novel domain combination first found in metazoans. Phylogenetic analyses suggest that the NACHT/NB-ARC domain inventories of various metazoan lineages, including corals, are largely products of lineage-specific expansions. Many of the NACHT/NB-ARC loci are organized in pairs or triplets in the Acropora genome, suggesting that the large coral NACHT/NB-ARC repertoire has been generated at least in part by tandem duplication. In addition, shuffling of N-terminal effector domains may have occurred after expansions of specific NACHT/NB-ARC-repeat domain types. These results illustrate the extraordinary complexity of the innate immune repertoire of corals, which may in part reflect adaptive evolution to a symbiotic lifestyle in a uniquely complex and challenging environment.


Assuntos
Antozoários/genética , Proteínas Adaptadoras de Sinalização NOD/genética , Domínios e Motivos de Interação entre Proteínas , Animais , Antozoários/imunologia , Evolução Molecular , Duplicação Gênica , Loci Gênicos , Variação Genética , Genoma , Imunidade Inata/genética , Proteínas Adaptadoras de Sinalização NOD/metabolismo , Filogenia , Análise de Sequência de DNA
18.
Zoolog Sci ; 31(3): 129-34, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24601774

RESUMO

To test whether telomere length can be used in estimating the age of colonial corals, we used terminal restriction fragment (TRF) length analysis to compare the telomere lengths of the coral Acropora digitifera at three developmental stages: sperm, planula larvae, and polyps of adult colonies. We also compared the mean TRF lengths between branches at the center and periphery of tabular colonies of A. digitifera. A significant difference was observed in the mean TRF lengths in sperm, planulae, and polyps. The mean TRF length was longest in sperm and shortest in polyps from adult colonies. These results suggest that telomere length decreases during coral development and may be useful for estimating coral age. However, the mean TRF length of branches at the center of a table-form colony tended to be longer than that of peripheral branches, although this difference was not statistically significant. This suggests that both the chronological age of polyps and cell proliferation rate influence telomere length in polyps, and that estimating coral age based on telomere length is not a simple endeavor.


Assuntos
Antozoários/genética , Encurtamento do Telômero , Telômero/fisiologia , Animais , DNA , Larva/genética , Masculino , Espermatozoides
19.
Int J Mol Sci ; 15(8): 14364-71, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25196437

RESUMO

Barnacles of the genus Neoverruca are abundant near deep-sea hydrothermal vents of the northwestern Pacific Ocean, and are useful for understanding processes of population formation and maintenance of deep-sea vent faunas. Using next-generation sequencing, we isolated 12 polymorphic microsatellite loci from Neoverruca sp., collected in the Okinawa Trough. These microsatellite loci revealed 2-19 alleles per locus. The expected and observed heterozygosities ranged from 0.286 to 1.000 and 0.349 to 0.935, respectively. Cross-species amplification showed that 9 of the 12 loci were successfully amplified for Neoverruca brachylepadoformis in the Mariana Trough. A pairwise FST value calculated using nine loci showed significant genetic differentiation between the two species. Consequently, the microsatellite markers we developed will be useful for further population genetic studies to elucidate genetic diversity, differentiation, classification, and evolutionary processes in the genus Neoverruca.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fontes Hidrotermais , Repetições de Microssatélites/genética , Thoracica/genética , Animais , Genética Populacional
20.
Genome Biol Evol ; 16(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38271267

RESUMO

Reef-building corals (Scleractinia, Anthozoa, Cnidaria) are the keystone organisms of coral reefs, which constitute the most diverse marine ecosystems. Since the first decoded coral genome reported in 2011, about 40 reference genomes are registered as of 2023. Comparative genomic analyses of coral genomes have revealed genomic characters that may underlie unique biological characteristics and coral diversification. These include existence of genes for biosynthesis of mycosporine-like amino acids, loss of an enzyme necessary for cysteine biosynthesis in family Acroporidae, and lineage-specific gene expansions of DMSP lyase-like genes in the genus Acropora. While symbiosis with endosymbiotic photosynthetic dinoflagellates is a common biological feature among reef-building corals, genes associated with the intricate symbiotic relationship encompass not only those shared by many coral species, but also genes that were uniquely duplicated in each coral lineage, suggesting diversified molecular mechanisms of coral-algal symbiosis. Coral genomic data have also enabled detection of hidden, complex population structures of corals, indicating the need for species-specific, local-scale, carefully considered conservation policies for effective maintenance of corals. Consequently, accumulating coral genomic data from a wide range of taxa and from individuals of a species not only promotes deeper understanding of coral reef biodiversity, but also promotes appropriate and effective coral reef conservation. Considering the diverse biological traits of different coral species and accurately understanding population structure and genetic diversity revealed by coral genomic analyses during coral reef restoration planning could enable us to "archive" coral reef environments that are nearly identical to natural coral reefs.


Assuntos
Antozoários , Recifes de Corais , Humanos , Animais , Antozoários/genética , Ecossistema , Genômica , Genoma , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA