Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Gastroenterology ; 152(6): 1521-1535.e8, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28088462

RESUMO

BACKGROUND & AIMS: Hypoxia-inducible factor 1α subunit (HIF1A) is a transcription factor that controls the cellular response to hypoxia and is activated in hepatocytes of patients with nonalcoholic fatty liver disease (NAFLD). NAFLD increases the risk for cholesterol gallstone disease by unclear mechanisms. We studied the relationship between HIF1A and gallstone formation associated with liver steatosis. METHODS: We performed studies with mice with inducible disruption of Hif1a in hepatocytes via a Cre adenoviral vector (inducible hepatocyte-selective HIF1A knockout [iH-HIFKO] mice), and mice without disruption of Hif1a (control mice). Mice were fed a diet rich in cholesterol and cholate for 1 or 2 weeks; gallbladders were collected and the number of gallstones was determined. Livers and biliary tissues were analyzed by histology, quantitative reverse-transcription polymerase chain reaction, immunohistochemistry, and immunoblots. We measured concentrations of bile acid, cholesterol, and phospholipid in bile and rates of bile flow. Primary hepatocytes and cholangiocytes were isolated and analyzed. HIF1A was knocked down in Hepa1-6 cells with small interfering RNAs. Liver biopsy samples from patients with NAFLD, with or without gallstones, were analyzed by quantitative reverse-transcription polymerase chain reaction. RESULTS: Control mice fed a diet rich in cholesterol and cholate developed liver steatosis with hypoxia; levels of HIF1A protein were increased in hepatocytes around central veins and 90% of mice developed cholesterol gallstones. Only 20% of the iH-HIFKO mice developed cholesterol gallstones. In iH-HIFKO mice, the biliary lipid concentration was reduced by 36%, compared with control mice, and bile flow was increased by 35%. We observed increased water secretion from hepatocytes into bile canaliculi to mediate these effects, resulting in suppression of cholelithogenesis. Hepatic expression of aquaporin 8 (AQP8) protein was 1.5-fold higher in iH-HIFKO mice than in control mice. Under hypoxic conditions, cultured hepatocytes increased expression of Hif1a, Hmox1, and Vegfa messenger RNAs (mRNAs), and down-regulated expression of AQP8 mRNA and protein; AQP8 down-regulation was not observed in cells with knockdown of HIF1A. iH-HIFKO mice had reduced inflammation and mucin deposition in the gallbladder compared with control mice. Liver tissues from patients with NAFLD with gallstones had increased levels of HIF1A, HMOX1, and VEGFA mRNAs, compared with livers from patients with NAFLD without gallstones. CONCLUSIONS: In steatotic livers of mice, hypoxia up-regulates expression of HIF1A, which reduces expression of AQP8 and concentrates biliary lipids via suppression of water secretion from hepatocytes. This promotes cholesterol gallstone formation. Livers from patients with NAFLD and gallstones express higher levels of HIF1A than livers from patients with NAFLD without gallstones.


Assuntos
Colesterol/metabolismo , Cálculos Biliares/genética , Cálculos Biliares/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Aquaporinas/genética , Aquaporinas/metabolismo , Bile/metabolismo , Ácidos e Sais Biliares/metabolismo , Colatos/administração & dosagem , Colesterol na Dieta/administração & dosagem , Colesterol na Dieta/metabolismo , Regulação para Baixo/genética , Feminino , Vesícula Biliar/patologia , Cálculos Biliares/patologia , Heme Oxigenase-1/genética , Hepatócitos/metabolismo , Humanos , Hipóxia/metabolismo , Inflamação/etiologia , Fígado/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mucinas/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , RNA Mensageiro/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Água/metabolismo
2.
Am J Physiol Endocrinol Metab ; 304(3): E301-9, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23211520

RESUMO

Chronic stress is well known to affect metabolic regulation. However, molecular mechanisms interconnecting stress response systems and metabolic regulations have yet to be elucidated. Various physiological processes, including glucose/lipid metabolism, are regulated by the circadian clock, and core clock gene dysregulation reportedly leads to metabolic disorders. Glucocorticoids, acting as end-effectors of the hypothalamus-pituitary-adrenal (HPA) axis, entrain the circadian rhythms of peripheral organs, including the liver, by phase-shifting core clock gene expressions. Therefore, we examined whether chronic stress affects circadian expressions of core clock genes and metabolism-related genes in the liver using the chronic mild stress (CMS) procedure. In BALB/c mice, CMS elevated and phase-shifted serum corticosterone levels, indicating overactivation of the HPA axis. The rhythmic expressions of core clock genes, e.g., Clock, Npas2, Bmal1, Per1, and Cry1, were altered in the liver while being completely preserved in the hypothalamic suprachiasmatic nuculeus (SCN), suggesting that the SCN is not involved in alterations in hepatic core clock gene expressions. In addition, circadian patterns of glucose and lipid metabolism-related genes, e.g., peroxisome proliferator activated receptor (Ppar) α, Pparγ-1, Pparγ-coactivator-1α, and phosphoenolepyruvate carboxykinase, were also disturbed by CMS. In contrast, in C57BL/6 mice, the same CMS procedure altered neither serum corticosterone levels nor rhythmic expressions of hepatic core clock genes and metabolism-related genes. Thus, chronic stress can interfere with the circadian expressions of both core clock genes and metabolism-related genes in the liver possibly involving HPA axis overactivation. This mechanism might contribute to metabolic disorders in stressful modern societies.


Assuntos
Adaptação Fisiológica/fisiologia , Proteínas CLOCK/metabolismo , Relógios Circadianos/fisiologia , Regulação da Expressão Gênica/fisiologia , Fígado/metabolismo , Estresse Fisiológico/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Sci Rep ; 8(1): 1499, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367680

RESUMO

Olfactory receptors (ORs) mediate olfactory chemo-sensation in OR neurons. Herein, we have demonstrated that the OR chemo-sensing machinery functions in pancreatic ß-cells and modulates insulin secretion. First, we found several OR isoforms, including OLFR15 and OLFR821, to be expressed in pancreatic islets and a ß-cell line, MIN6. Immunostaining revealed OLFR15 and OLFR821 to be uniformly expressed in pancreatic ß-cells. In addition, mRNAs of Olfr15 and Olfr821 were detected in single MIN6 cells. These results indicate that multiple ORs are simultaneously expressed in individual ß-cells. Octanoic acid, which is a medium-chain fatty acid contained in food and reportedly interacts with OLFR15, potentiated glucose-stimulated insulin secretion (GSIS), thereby improving glucose tolerance in vivo. GSIS potentiation by octanoic acid was confirmed in isolated pancreatic islets and MIN6 cells and was blocked by OLFR15 knockdown. While Gα olf expression was not detectable in ß-cells, experiments using inhibitors and siRNA revealed that the pathway dependent on phospholipase C-inositol triphosphate, rather than cAMP-protein kinase A, mediates GSIS potentiation via OLFR15. These findings suggest that the OR system in pancreatic ß-cells has a chemo-sensor function allowing recognition of environmental substances obtained from food, and potentiates insulin secretion in a cell-autonomous manner, thereby modulating systemic glucose metabolism.


Assuntos
Glucose/metabolismo , Células Secretoras de Insulina/química , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Receptores Odorantes/análise , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/análise , Receptores Odorantes/genética
4.
EBioMedicine ; 15: 163-172, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27974246

RESUMO

Major symptoms of diabetes mellitus manifest, once pancreatic ß-cell numbers have become inadequate. Although natural regeneration of ß-cells after injury is very limited, bone marrow (BM) transplantation (BMT) promotes their regeneration through undetermined mechanism(s) involving inter-cellular (BM cell-to-ß-cell) crosstalk. We found that two microRNAs (miRNAs) contribute to BMT-induced ß-cell regeneration. Screening murine miRNAs in serum exosomes after BMT revealed 42 miRNAs to be increased. Two of these miRNAs (miR-106b-5p and miR-222-3p) were shown to be secreted by BM cells and increased in pancreatic islet cells after BMT. Treatment with the corresponding anti-miRNAs inhibited BMT-induced ß-cell regeneration. Furthermore, intravenous administration of the corresponding miRNA mimics promoted post-injury ß-cell proliferation through Cip/Kip family down-regulation, thereby ameliorating hyperglycemia in mice with insulin-deficient diabetes. Thus, these identified miRNAs may lead to the development of therapeutic strategies for diabetes.


Assuntos
Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/genética , Hiperglicemia/genética , Células Secretoras de Insulina/metabolismo , MicroRNAs/genética , Animais , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte/genética , Proliferação de Células , Proteínas Correpressoras , Diabetes Mellitus Experimental , Modelos Animais de Doenças , Exossomos , Regulação da Expressão Gênica , Ilhotas Pancreáticas/metabolismo , Camundongos , Proteínas Nucleares , Interferência de RNA , Regeneração
5.
PLoS One ; 11(3): e0150756, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26963613

RESUMO

Selective sodium glucose cotransporter-2 inhibitor (SGLT2i) treatment promotes urinary glucose excretion, thereby reducing blood glucose as well as body weight. However, only limited body weight reductions are achieved with SGLT2i treatment. Hyperphagia is reportedly one of the causes of this limited weight loss. However, the effects of SGLT2i treatment on systemic energy expenditure have not been fully elucidated. Herein, we investigated the acute effects of dapagliflozin, a SGLT2i, on systemic energy expenditure in mice. Eighteen hours after dapagliflozin treatment oxygen consumption and brown adipose tissue (BAT) expression of ucp1, a thermogenesis-related gene, were significantly decreased as compared to those after vehicle treatment. In addition, dapagliflozin significantly suppressed norepinephrine (NE) turnover in BAT and c-fos expression in the rostral raphe pallidus nucleus (rRPa) which contains the sympathetic premotor neurons responsible for thermogenesis. These findings indicate that the dapagliflozin-mediated acute decrease in energy expenditure involves a reduction in BAT thermogenesis via decreased sympathetic nerve activity from the rRPa. Furthermore, common hepatic branch vagotomy abolished the reductions in ucp1 expression and NE contents in BAT and c-fos expression in the rRPa. In addition, alterations in hepatic carbohydrate metabolism, such as decreases in glycogen contents and upregulation of phosphoenolpyruvate carboxykinase, manifested prior to the suppression of BAT thermogenesis, e.g. 6 hours after dapagliflozin treatment. Collectively, these results suggest that SGLT2i treatment acutely suppresses energy expenditure in BAT via regulation of an inter-organ neural network consisting of the common hepatic vagal branch and sympathetic nerves.


Assuntos
Tecido Adiposo Marrom/metabolismo , Compostos Benzidrílicos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Glucosídeos/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose , Transmissão Sináptica/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glicogênio/metabolismo , Canais Iônicos/biossíntese , Fígado/metabolismo , Masculino , Camundongos , Núcleos da Rafe do Mesencéfalo/metabolismo , Proteínas Mitocondriais/biossíntese , Proteínas Proto-Oncogênicas c-fos/biossíntese , Transportador 2 de Glucose-Sódio/metabolismo , Proteína Desacopladora 1 , Nervo Vago/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA