Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Biomacromolecules ; 20(4): 1748-1755, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30785729

RESUMO

The cell manipulation technique using thermoresponsive polymers is currently attracting much attention for applications in the medical field. To achieve arbitrary and accurate cell control, it is necessary to intensely research fibronectin behavior. A smart surface, which has thermoresponsive wettability and which can adsorb or desorb fibronectin repeatedly without the presence of cells, was fabricated by an electrospinning method. The fabricated coating changed its structure as the temperature was changed, and this transformation could substitute for the pulling force generated by the cytoskeletal contraction of cells. Moreover, a coated quartz crystal microbalance was able to detect the fibronectin behavior as frequency shifts, which could be used in the estimation of the mass shift with the aid of suitable equations. This coating and measurement system can contribute greatly not only to the development in the medical field centered on biomaterial manipulation technologies, but also to the improvement of medical instruments.


Assuntos
Materiais Biocompatíveis/química , Fibronectinas/química , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície
2.
Macromol Rapid Commun ; 40(23): e1900464, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31692103

RESUMO

Stimuli-responsive smart materials are a key to the realization of next-generation medical technologies. Among them, the temperature-responsive polymer poly(N-isopropylacrylamide) (PNIPAAm) is attracting particular attention because it is easy to use in physiological conditions. PNIPAAm-grafted surfaces can undergo temperature-modulated cell adhesion and detachment without proteolytic enzymes, and can be used as cell-separating materials through selective cell adhesion/detachment. However, cell detachment at reduced temperatures is problematic because it takes several hours. A novel thermoresponsive crosslinked microfiber system that can greatly reduce the cell detachment time is introduced in this study. The crosslinked fibers provide temperature-dependent volume change, and enable cell detachment within 10 min of reducing the temperature, which is one-sixth of the time required in previous studies. The prompt cell detachment is thought to arise from a completely new mechanism derived from fiber swelling. This system will make a significant contribution as a novel cell manipulating system for next-generation medical technology.


Assuntos
Resinas Acrílicas/química , Materiais Biocompatíveis/química , Reagentes de Ligações Cruzadas/química , Animais , Adesão Celular , Camundongos , Microscopia Confocal , Células NIH 3T3 , Tamanho da Partícula , Propriedades de Superfície , Temperatura
3.
Langmuir ; 34(4): 1386-1393, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29286674

RESUMO

Lubricant-infused surface(s) (LIS) bioinspired by the Nepenthes pitcher plant are receiving enormous attention owing to their excellent hydrophobicity as well as their self-healing ability. Thus, they have been applied as anticorrosion coatings. However, the loss of lubricant mediated by vapor or other liquids deteriorates their functions. Herein, we introduce a lubricant-inserted (sandwiched) microporous triple-layered surface (LIMITS) that prevents the sudden loss of lubricant. The sandwiched lubricant gradually self-secretes toward the surface, resulting in long-term stability even under water. The LIMITS prevented the corrosion of the Fe plate for at least 45 days, which is much superior to a conventional LIS coating. This work opens an avenue for the application of slippery coating materials that are stable under water and will also promote the development of anticorrosion coating in various industries.

4.
Anal Chem ; 89(19): 10391-10396, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28872848

RESUMO

A liquid droplet in contact with a superhydrophobic surface can be used to collect dissolved trace materials after evaporating the solvent. This process effect enhances detection limits, but a liquid droplet easily rolls off a superhydrophobic surface. Keeping it at a specific collecting spot area is challenging. Here the means for controlling and capturing a liquid droplet on a superhydrophobic surface is demonstrated. To induce a liquid droplet to a collecting spot, its rolling direction was controlled by two superhydrophobic fabric guides. The liquid droplet was then captured by hydrophilic polymer and hydrophilic nanoparticles at the measuring spot. After removing the solvent, the trace compounds were evaluated with a colorimetric analysis visible to the naked eye.

5.
Anal Chem ; 89(22): 12123-12130, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29065682

RESUMO

Methylmercaptan (MM) is a marker of periodontal disease; however, the required sensitivity for MM is parts per billion, which has been challenging to realize with a simple sensor. Here, we report the capability to detect MM at concentrations as low as 20 ppb using layered manganese oxide nanosheets with a quartz crystal microbalance sensor. The sensing capabilities of the manganese oxide nanosheets are promoted by adsorbed water present on and between the nanosheets. The strong adsorption of MM to the sensor, which is necessary for the high sensitivity, leads to significant hysteresis in the response on cycling due to irreversible adsorption. However, the sensor can be readily reset by heating to 80 °C, which leads to highly reproducible response to MM vapor at low concentrations. A key aspect of this sensor design is the high selectivity toward MM in comparison to other compounds such as ethanol, ammonia, acetaldehyde, acetic acid, toluene, and pyridine. This layered nanosheets design for high-sensitivity sensors, demonstrated here for dilute MM, holds significant promise for addressing needs to identify sulfur compounds associated for environmental protection and medical diagnostics.


Assuntos
Gases/análise , Compostos de Manganês/química , Nanoconchas/química , Óxidos/química , Técnicas de Microbalança de Cristal de Quartzo , Compostos de Sulfidrila/análise , Tamanho da Partícula , Propriedades de Superfície
6.
Langmuir ; 33(50): 14445-14450, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-28625062

RESUMO

Manually controllable "hand-operated" smart systems have been developed in many fields, including smart wetting materials, electronic devices, molecular machines, and drug delivery systems. Because complex morphological or chemical control are generally required, versatile strategies for constructing the system are technologically important. Inspired by the natural phenomenon of raindrops rarely bouncing and usually spreading on a puddle, we introduce a droplet-impact-triggering smart-wetting system using "non-smart" smooth liquid coating materials. Changing the droplet impact energy by changing the volume or casting height causes the droplet to completely bounce or spread on the liquid surface, regardless of the miscibility between the two liquids, owing to the stability of air layer. As the bouncing of a droplet on a liquid interface is not usually observed during wetting, we first analyze how the droplet bounces, then prove that the wettability is triggered by the droplet's impact energy, and finally introduce some applications using this system.


Assuntos
Molhabilidade
7.
Langmuir ; 33(36): 8950-8960, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28826213

RESUMO

Control of vapor condensation properties is a promising approach to manage a crucial part of energy infrastructure conditions. Heat transfer by vapor condensation on superhydrophobic coatings has garnered attention, because dropwise condensation on superhydrophobic surfaces with rough structures leads to favorable heat-transfer performance. However, pinned condensed water droplets within the rough structure and a high thermodynamic energy barrier for nucleation of superhydrophobic surfaces limit their heat-transfer increase. Recently, slippery liquid-infused surfaces (SLIPS) have been investigated, because of their high water sliding ability and surface smoothness originating from the liquid layer. However, even on SLIPS, condensed water droplets are eventually pinned to degrade their heat-transfer properties after extended use, because the rough base layer is exposed as infused liquid is lost. Herein, we report a liquid-infused smooth surface named "SPLASH" (surface with π electron interaction liquid adsorption, smoothness, and hydrophobicity) to overcome the problems derived from the rough structures in previous approaches to obtain stable, high heat-transfer performance. The SPLASH displayed a maximum condensation heat-transfer coefficient that was 175% higher than that of an uncoated substrate. The SPLASH also showed higher heat-transfer performance and more stable dropwise condensation than superhydrophobic surfaces and SLIPS from the viewpoints of condensed water droplet mobility and the thermodynamic energy barrier for nucleation. The effects of liquid-infused surface roughness and liquid viscosity on condensation heat transfer were investigated to compare heat-transfer performance. This research will aid industrial applications using vapor condensation.

8.
Anal Chem ; 88(21): 10744-10750, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27723960

RESUMO

A polyelectrolyte film containing metastable silver ions was applied as a quartz crystal microbalance (QCM) gas detector. The polyelectrolyte film was obtained by immersing a polyelectrolyte with numerous amine groups in a metal ion solution. The QCM detector with silver ions responded to a very low methylmercaptan gas concentration (20 ppb) but did not respond to ammonia, volatile amines, aromatic compounds, or alcohols. The response speed of the QCM detector increased gradually with increasing methylmercaptan concentrations. The highly sensitive and selective response is promoted by a ligand substitution reaction caused by the formation of coordinative bonds between a metastable silver ion and amine groups in the polyelectrolyte film. To the best of our knowledge, this system has the highest sensitivity among reported QCM gas detectors. Such high-sensitivity among reported QCM gas detectors. Such high-sensitivity gas detectors for volatile sulfur compounds have wide ranging applications in areas such as volcanic eruption prediction, food inspection, environmental analysis, and medical diagnostics.

9.
Langmuir ; 32(28): 7219-27, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27359045

RESUMO

We describe a novel method for the simple and eco-friendly fabrication of porous polyelectrolyte films. A polyelectrolyte with many amine groups undergoes structural transformation from a dense to a porous structure upon immersion in a specific metal ion solution. The porous transition was the result of a reaction-induced phase separation, which was caused by the formation of new bonds between the polyelectrolyte and metal ions. This method enables control of the pore size of the porous structure in the nanoscale (54 nm) to microscale (1.63 µm) range through variation of the concentration or type of metal ions in the solution. To the best of our knowledge, this is the first report illustrating wide-range control of the pore size of a porous polyelectrolyte structure achieved by metal ions. These porous polyelectrolyte films with adjustable pore size and metastable metal ions can be employed in applications such as adsorption and catalysis.

10.
J Nanosci Nanotechnol ; 12(5): 3725-31, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22852300

RESUMO

Organic-inorganic hybrid solar cells based on poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C61 butyric acid methyl ester (PCBM) hybridized with ZnO nanorods were fabricated by growing vertical ZnO nanorods on indium tin oxide (ITO) substrates and filling with bulk heterojunction polymers (P3HT:PCBM). The interface between the organic and inorganic nanostructures influences the performance of the organic-inorganic hybrid solar cells. In this paper, the influence of the state of the P3HT:PCBM/ZnO interface on the performance of organic-inorganic hybrid solar cells is examined. The solar cell performance was high when the P3HT:PCBM/ZnO junction area was large. The charge separation is effective when the active layer/electron transport layer junction area is large, resulting in increasing photocurrent and a high conversion efficiency. The bulk-heterojunction polymer concentration was kept low to infiltrate into the ZnO nanorods, resulting in a large active layer/electron transport layer junction area.

11.
J Nanosci Nanotechnol ; 12(1): 563-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22524020

RESUMO

Ionophore-based quartz crystal microbalance (QCM) ammonium ion sensors with a detection limit for ammonium ion concentrations as low as 2.2 microM were fabricated. Ionophores are molecules, which selectively bind a particular ion. In this study, one of the known ionophores for ammonium, nonactin, was used to detect ammonium ions for environmental in-situ monitoring of aquarium water for the first time. To fabricate the sensing films, poly(vinyl chloride) was used as the matrix for the immobilization of nonactin. Furthermore, the anionic additive, tetrakis (4-chlorophenyl) borate potassium salt and the plasticizer dioctyl sebacate were used to enhance the sensor properties. The sensor allowed detecting ammonium ions not only in static solution, but also in flowing water. The sensor showed a nearly linear response with the increase of the ammonium ion concentration. The QCM resonance frequency increased with the increase of ammonium ion concentration, suggesting a decreasing weight of the sensing film. The detailed response mechanism could not be verified yet. However, from the results obtained when using a different plasticizer, nitrophenyl octyl ether, it is considered that this effect is caused by the release of water molecules. Consequently, the newly fabricated sensor detects ammonium ions by discharge of water. It shows high selectivity over potassium and sodium ions. We conclude that the newly fabricated sensor can be applied for detecting ammonium ions in aquarium water, since it allows measuring low ammonium ion concentrations. This sensor will be usable for water quality monitoring and controlling.


Assuntos
Ionóforos/química , Sistemas Microeletromecânicos/instrumentação , Técnicas de Sonda Molecular/instrumentação , Nanotecnologia/instrumentação , Compostos de Amônio Quaternário/análise , Desenho de Equipamento , Análise de Falha de Equipamento , Íons , Miniaturização
12.
Langmuir ; 27(7): 4271-7, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21381714

RESUMO

Antithrombogenic films with high durability were fabricated in a wet process. Antithrombogenicity was achieved with polyelectrolyte multilayer thin film prepared from poly(vinyl alcohol)-poly(acrylic acid) (PVA-PAA) blends, deposited in alternate layers with poly(allylamine hydrochloride) (PAH). Film durability, assessed by abrasion resistance and water resistance, was enhanced by forming cross-links via amide bonds induced by heat treatment of the film. The film was found to be resistant to protein adsorption, as measured by the amount of fibrinogen adsorbed from an aqueous solution. The antithrombogenic efficacy was assessed in ex vivo experiments by the ability of stainless steel mesh, coated with the polyelectrolyte and inserted into a pig blood vessel, to inhibit thrombus formation. Mesh coated with the polyelectrolyte did not reduce blood flow over a period of 15 min, whereas with uncoated mesh blood flow stopped within 6 min because of blood vessel blockage by thrombus formation.


Assuntos
Acrilatos/química , Fibrinolíticos/química , Membranas Artificiais , Polivinil/química , Animais , Teste de Materiais , Suínos
13.
Inorg Chem ; 50(3): 999-1004, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21192712

RESUMO

The ZnO nanorod growth mechanism during liquid-phase deposition (LPD) has been investigated, with results considered in the context of phase stabilization, LPD chemical processes, and Gibbs free energy and entropy. Zinc oxide (ZnO) possesses unique optical and electronic properties, and obtaining ZnO species with high specific surface area is important in ZnO applications. Highly c-axis-oriented ZnO films are expected to be utilized in future optical and electrical devices. ZnO nanorods were synthesized using an aqueous solution deposition technique on a glass substrate with a free-standing ZnO nanoparticle layer. ZnO nanorod growth was easily controlled on the nanoscale by adjustment of the immersion time (15-210 min). X-ray diffraction, field-emission scanning electron microscopy (FE-SEM), and film thickness measurements were used to characterize the crystalline phase, orientation, morphology, microstructure, and growth mechanism of the ZnO nanorods. FE-SEM images were analyzed by image processing software, which revealed details of the of ZnO nanorod growth mechanism.


Assuntos
Nanotecnologia/métodos , Nanotubos/química , Óxido de Zinco/química , Nanotubos/ultraestrutura , Termodinâmica
14.
Nanotechnology ; 22(19): 195703, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21430326

RESUMO

A thin film of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonic acid) (PEDOT-PSS), which is an alternative cathodic catalyst for Pt in dye-sensitized solar cells, was prepared using the layer-by-layer self-assembly method (LbL). The film is highly adhesive to the substrate and has a controllable thickness. Therefore, the PEDOT-PSS film prepared using LbL is expected have high performance and durability as a counter electrode. Moreover, when carbon black was added to the PEDOT-PSS solution, highly mesoporous PEDOT-PSS and carbon black hybrid films were obtained. These films showed high cathodic activity. In this study, we investigated the change in morphology in the obtained film with increasing carbon black content, and the influence of the porosity and thickness on the performance of the cells. In this study, a Pt-free counter electrode with performance similar to that of Pt-based counter electrodes was successfully fabricated. The achieved efficiency of 4.71% was only a factor of 8% lower than that of the cell using conventional thermally deposited Pt on fluorine-doped tin oxide glass counter electrodes.


Assuntos
Nanotecnologia/métodos , Platina/química , Poliestirenos/química , Tiofenos/química , Carbono/química , Eletrodos , Flúor/química , Vidro , Luz , Teste de Materiais , Microscopia Eletrônica de Varredura/métodos , Porosidade , Fuligem/química , Compostos de Estanho/química
15.
Sci Rep ; 10(1): 13233, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764727

RESUMO

Electrospinning is a powerful and versatile technique to produce efficient, specifically tailored and high-added value anodes for lithium ion batteries. Indeed, electrospun carbon nanofibers (CNFs) provide faster intercalation kinetics, shorter diffusion paths for ions/electrons transport and a larger number of lithium insertion sites with respect to commonly employed powder materials. With a view to further enhance battery performances, red phosphorous (RP) is considered one of the most promising materials that can be used in association with CNFs. RP/CNFs smart combinations can be exploited to overcome RP low conductivity and large volume expansion during cycling. In this context, we suggest a simple and cost effective double-step procedure to obtain high-capacity CNFs anodes and to enhance their electrochemical performances with the insertion of red phosphorous in the matrix. We propose a simple dropcasting method to confine micro- and nanosized RP particles within electrospun CNFs, thus obtaining a highly efficient, self-standing, binder-free anode. Phosphorous decorated carbon mats are characterized morphologically and tested in lithium ion batteries. Results obtained demonstrate that the reversible specific capacity and the rate capability of the obtained composite anodes is significantly improved with respect to the electrospun carbon mat alone.

16.
ACS Appl Mater Interfaces ; 11(12): 11928-11935, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30830747

RESUMO

High-performance flexible pressure sensors have an essential application in many fields such as human detection and human-computer interaction. Herein, on the basis of the dielectric layer of a bionic komochi konbu structure, we propose a low-cost and novel capacitive sensor that achieves high sensitivity and stability over a broad range of tactile pressures. Further, the flexible and durable electrode layer of the transparent junctionless copper/nickel-nanonetwork was prepared based on electrospinning and electroless deposition techniques, which ensured high bending stability and high cycle stability of our sensor. More importantly, because of the sizeable protruding structure and internal micropores in the elastomer structure we designed, the inward curling of the protruding structure and the effectual closing of the micropores increase the effective dielectric constant under the action of the compressive force, improving the sensitivity of the sensor. Measured response and relaxation time (162 ms) are 250 times faster than those of a conventional flat polydimethylsiloxane capacitive sensor. In addition, the fabricated capacitive pressure sensor demonstrates the ability to be used on wearable applications, not only to quickly recognize the tapping and bending of a finger but also to show that the pressure of the finger can be sensed when the finger grabs the object. The sensors we have developed have shown great promise in practical applications, such as human rehabilitation and exercise monitoring, as well as human-computer interaction control.

17.
Biomed Mater Eng ; 18(2): 99-106, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18408261

RESUMO

Recently, expired gases are analyzed non-invasively for monitoring the substances in the blood. Breath ammonia has been shown to correlate with BUN (blood urea nitrogen) and Cr (creatinine), both of which are indicators of solute removal in hemodialysis. In this study, breath ammonia concentration was continuously measured using a crystal oscillator QCM (quartz crystal microbalance) during the expiration of patients undergoing dialysis treatment. The results show that NH3 (ammonia) decreased gradually as the treatment proceeded. A strong correlation was observed between changes in the frequency of the QCM gas sensor and both the pre-dialysis BUN level (r=0.71, p<0.05) and the post-dialysis BUN level (r=0.90, p<0.05). NH3 was found to fall precipitously during dialysis. The differences were statistically significant. In addition, we found a statistically significant correlation between BUN and NH3 in expired gas. These results suggest that continuous measurement of NH3 is useful to assess the status of solute removal during hemodialysis.


Assuntos
Amônia/análise , Técnicas Biossensoriais/instrumentação , Diálise Renal , Idoso , Idoso de 80 Anos ou mais , Técnicas Biossensoriais/métodos , Nitrogênio da Ureia Sanguínea , Testes Respiratórios/instrumentação , Creatinina/análise , Creatinina/sangue , Feminino , Gases/análise , Humanos , Masculino , Pessoa de Meia-Idade , Diálise Renal/métodos
18.
ACS Biomater Sci Eng ; 4(5): 1891-1899, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33445344

RESUMO

During operations, medical doctors use various medical equipment that is mainly manufactured from metallic materials. Bipolar forceps are used for electrosurgery, especially neurosurgery. Bipolar forceps are utilized for cutting, inosculation, and quick hemostasis with electricity. Because bipolar tips reach a high temperature, the tissue that makes contact with the tips and nearby tissue is damaged. In addition, operations are delayed because of the need to wash or change equipment because of tissue adhering to the bipolar tips. Herein, we designed bipolar forceps with antiadhesion properties by coating them with a superhydrophobic material. We compared the effect of the coating by using bipolar forceps in different tissue samples and target areas, which reached different surface temperatures. Furthermore, the effect of the surface wettability was investigated. The temperature measurements and adhesion force measurements indicated that coating of the sample significantly limited the temperature increase and reduced the adhesion force. We demonstrated that the antiadhesion properties depended on the change in the surface tension of the hydrophobic material coating. These coatings are promising for decreasing tissue adhesion on metallic devices and decreasing collateral heat damage to the tissue.

19.
ACS Appl Mater Interfaces ; 10(18): 15742-15750, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29687990

RESUMO

Redox flow batteries (RFBs) have emerged as a promising candidate for large-scale energy storage because of the flexible design for high energy, power, and safety. In this study, FeCl3·6H2O/urea composite deep eutectic catholyte (FeU-DEC)-infused self-standing carbon nanofiber (CNF) was synthesized for green and high power density RFB through industrially available processes. FeU-DEC-infused CNF displayed an extremely high power density (874 mW/g) as well as high capacity (27.28 mAh/g) derived from high theoretical capacity of FeU-DEC (89.24 mAh/g) in addition to the advantages of the FeU-DEC characteristics (e.g., nonflammable, biodegradable, facile preparation). This is because of the large electroactive area derived from the high surface area of CNF and superlyophilicity of FeU-DEC on CNFs. Furthermore, we compared the wettability of CNF with other electrodes, as well as the chemical stability and electrode performance, based on topological wetting analysis using parameters of fiber radius, fiber interval, the equilibrium contact angle of FeU-DEC on electrodes, and surface tension of FeU-DEC, giving wetting threshold for FeU-DEC on fibrous electrodes. The wetting analysis are applied not only for FeU-DEC, but also for a wide range of other DECs and deep eutectic anolyte. This work contributes to the further development of green and high-performance RFBs.

20.
ACS Appl Mater Interfaces ; 10(4): 4198-4205, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29323482

RESUMO

Inspired by natural living things such as lotus leaves and pitcher plants, researchers have developed many excellent antifouling coatings. In particular, hot-water-repellent surfaces have received much attention in recent years because of their wide range of applications. However, coatings with stability against boiling in hot water have not been achieved yet. Long-chain perfluorinated materials, which are often used for liquid-repellent coatings owing to their low surface energy, hinder the potential application of antifouling coatings in food containers. Herein, we design a fluorine-free slippery surface that immobilizes a biocompatible lubricant layer on a phenyl-group-modified smooth solid surface through OH-π interactions. The smooth base layer was fabricated by modification of phenyltriethoxysilane through a sol-gel method. The π-electrons of the phenyl groups interact with the carboxyl group of the oleic acid used as a lubricant, which facilitates immobilization on the base layer. Water droplets slid off the surface in the temperature range from 20 to 80 °C at very low sliding angles (<2°). Furthermore, we increased the π-electron density in the base layer to strengthen the OH-π interactions, which improved long-term boiling stability under hot water. We believe that this surface will be applied in fields in which the practical use of antifouling coatings is desirable, such as food containers, drink cans, and glassware.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA